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Abstract - Telemetry sampling rates from enterprise 

servers and for IoT asset prognostic monitoring are often 

constrained by hardware limitations in physical 

transducers and A/D digitizing firmware, and by hard-

coded firmware in data acquisition instrumentation.  The 

sampling restrictions impose challenges in terms of 

training advanced pattern recognition for prognostic 

applications such as Prognostic Cyber Security in 

enterprise and cloud data centers, and prognostic health 

management for end-customer IoT critical assets.  No 

matter how slow the inherent sampling rate capabilities 

are for monitored assets, this paper introduces a novel 

empirical systematic and rigorous process to produce 

arbitrarily high telemetry sampling densities from assets 

for which such high telemetry sampling densities are 

physically and electronically impossible.  This capability 

is achieved with no hardware or firmware modifications 

in any of the critical assets being monitored, and hence 

is backward compatible with legacy assets already in 

operation. 

Keywords: prognostic cyber security, internet-of-

things, IoT, real time prognostics, anomaly detection, 

AI.  

 

1 Introduction 

  For enterprise computer servers in cloud data 

centers, the maximum achievable telemetry sampling 

rates are constrained by standards that have evolved over 

the last two decades and will be very difficult to change.  

Sampling rates are constrained by the ILOM firmware 

that runs on the server's Service Processor (SP), by the 

IPMI interface standard, and by the I2C system bus.  

Today, for typical enterprise servers, the fastest possible 

sampling interval for physical telemetry readings that 

have been found to have prognostic significance (e.g. 

temperatures, voltages, currents, component power 

levels, fan speeds) is greater than 10 secs for some 

systems and as slow as once per minute on large servers 

containing up to a few thousand sensors for the “heavy 

iron” refrigerator-sized servers.  As the number of 

sensors goes up exponentially with time (in fact, faster 

than Moore’s Law for the last decade), the attainable 

sampling rates have gone down, thanks to only 

incremental improvements in bandwidth. 

Similarly, the present sampling intervals achievable for 

“soft” telemetry metrics that have prognostic relevance 

for Quality-of-Service (QoS) assurance and for 

prognostic cyber security applications are as long as 

about 10 min for many important metrics (e.g. loads, 

utilizations, throughput metrics, queue lengths, 

transaction latencies, etc).   These sampling rates were 

adequate in the past when only crude performance 

diagnostic aids were provided with servers to signify 

severe performance issues (e.g. thresholds to alert 

human Sysadmins or Service Engineers about 

exhaustion-of-resource problems).   

Unfortunately, threshold-based warnings and 

diagnostics are “reactive” in nature...i.e. by the time a 

threshold limit has been exceeded, the problem is 

already severely underway (or the system is crashed).  

Because of the increasingly business-critical nature of 

enterprise and cloud computing, this endemic limitation 

of threshold-based diagnostics has motivated significant 

R&D inside Oracle and other systems vendors on 

machine-learning (ML) based prognostics, to 

proactively alert human Sysadmins and Services 

personnel of incipient anomalies, hopefully with enough 

lead time so that issues can be avoided or proactively 

remediated, well before end customers become aware of 

QoS issues or other customer dissatisfiers, and at the 

earliest possible time for proactive “indicators of 

compromise” (IOCs) for cyber security applications in 

business-critical systems. 

Slow telemetry sampling rates introduce an even greater 

problem for ML based prognostic algorithms than for 

older crude threshold-based prognostics.  For example, 

if an important class of QoS telemetry metrics can only 

come in at a rate of once every 10 min, this means an 

Alert to a QoS problem can appear as long as 10 min 

later than the system is experiencing problems.  

Although Alerts for threshold-based diagnostics are of 

only limited usefulness for avoiding customer 

dissatisfiers (again, because threshold based diagnostics 

are reactive in nature), getting the alert 10 min earlier is 

only marginally more useful than 10 min later, as the 

system is likely already in serious trouble anyway when 

a threshold is tripped.  In other words, slow sampling 

rates do not make threshold-based diagnostics much 

worse. 
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By contrast, machine-learning prognostics have the 

already proven capability to alert human Sysadmins and 

Service Engineers hours and sometimes days in advance 

for slow degradation mechanisms, which is the problem 

realm where ML-prognostics holds its greatest promise.  

However, the effectiveness of Oracle’s ML prognostics 

(in terms of minimizing false-alarm and missed-alarm 

probabilities, FAPs and MAPs) is very dependent upon 

sampling rates for the monitored metrics. 

It is well known from prognostics research at Oracle to 

date that if a ML algorithm is used for a system with a 

high sampling rate for all monitored performance 

metrics, this ML algorithm will perform significantly 

better than if the same ML monitoring algorithm were 

used for an identical server configuration with a much 

slower sampling rate.  Similarly, if a ML algorithm is 

trained with high-sampling-rate telemetry metrics, and 

then that trained algorithm is use to monitor the identical 

system but with a slower sampling rate for a real asset in 

a production environment, that ML algorithm will 

perform better because it is trained on high-sampling-

rate telemetry data, versus if the identical ML algorithm 

were trained on slow sampling rate telemetry metrics.  

[The reason for improved prognostic performance with 

higher-sampling-rate training data is that the ML 

algorithm, especially those algorithms we are using from 

the class of mathematics called NonLinear 

NonParametric (NLNP) Regression, can much better 

“learn” the patterns of dynamical correlation 

between/among all the monitored metrics.  See technical 

details in section below: “Why High Sampling Densities 

are Important”.] 

Because ML algorithms can perform much better if 

trained on high sampling rate telemetry metrics, even 

when the trained algorithms will be monitoring 

customer assets with slower sampling rates, it would be 

very desirable if one could “crank up” the sampling rate 

to arbitrarily high values for training of the ML 

algorithms. 

For almost all existing enterprise servers, storage, and 

engineered systems, it is either impossible or impractical 

to “crank up” the sampling rates for internal digitized 

telemetry time-series metrics for the purposes of getting 

better training data sets for sensitivity-tuning and 

prognostic optimization of ML surveillance 

algorithmics for predictive anomaly detection and 

Prognostic Cyber Security goals.  In almost all cases the 

digitized sampling rates are hard-coded into the low-

level hardware registers and system firmware, in other 

cases there are no “knobs” accessible to end customers 

or to internal system-vendor engineers, only because 

system-bus bandwidths and IO bandwidths could be 

saturated if either humans or automated agentry were to 

“turn up” the sampling rates on telemetry time series. 

In the future, industry standards may evolve to allow 

much higher sampling rates for telemetry variables.  

This will be a slow process.  Moreover, it will be 

impossible to back-fit the $Bs in legacy systems with 

new internal system bus architectures.  What is needed 

is an innovation that allows extraction of very high 

sampling rate thermal dynamics from standard 

architectures meeting present-day standards (I2C, IPMI, 

ILOM) and with no hardware modifications to the 

enterprise servers.  

We describe in this paper a novel analytical innovation 

that allows "Telemetric Sampling Densification" that 

provides very accurate, fine-grained thermal dynamics 

for any standard enterprise computing servers that 

Oracle (or other systems vendors) make, even when the 

servers are constrained to slow sampling rates by 

industry-standard I2C, IPMI, or ILOM architectures. 

The new innovation for boosting telemetry sampling 

rates presented herein is empirically based and is 

superior for any prognostic monitoring and cyber 

security applications where “reference testbed 

configurations,” or prototype systems for IoT assets in 

the fields of utilities, oil-and-gas, manufacturing, or 

transportation, can be set up in an internal test/dev 

laboratory.  This paper teaches a sophisticated 

experimental procedure, described in detail below, that 

enables “sampling densification” on enterprise servers 

and all types of IoT critical assets, even for systems for 

which faster telemetry sampling rates are 

physically/electronically impossible, and even when all 

available bandwidth pathways are near saturation and 

cannot be increased. 

In this paper we introduce a new technique that provides 

high-accuracy, high-sampling-density real-time 

empirical telemetry for enterprise servers and IoT assets.  

These fine-grained high-sampling-density telemetry 

time-series signatures are created with a novel empirical 

technique we call “sampling densification” that enables 

extremely high resolution digitized time series telemetry 

from all types of internal physical transducers, without 

requiring any hardware modifications for standard 

architectures meeting present-day sampling and 

bandwidth protocol standards for data acquisition 

(DAQ) instrumentation.  We are in effect getting high 

resolution, high sampling rate physical telemetry in 

systems with low-bandwidth industry-standard system 

bus and network-interface architectures through the new 

“sampling densification” innovation introduced below. 
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The primary use case for this innovation is for enhanced 

prognostics of IT systems and IoT critical assets, and 

enhanced cyber security of data center and cloud IT 

systems and network.  However, this technique has 

important use cases in other industries as well because 

the technique enhances the prognostic performance of 

prognostic algorithms, including all classes of machine-

learning (ML) and deep-learning (DL) algorithmics 

presently being evaluated for IoT anomaly detection and 

Prognostic Cyber Security.  This new "Telemetric 

Sampling Densification" approach provides very 

accurate, fine-grained telemetry for business-critical and 

mission-critical assets for which prognostic algorithmics 

are being applied for early detection of the incipience or 

onset of degradation modes in physical assets, or 

malicious intrusion events in networked IT systems. 

2 Why Sampling Density is Important 

 If idealized computing systems existed wherein all 

the interactions between/among the myriad telemetry 

signatures were linear, then sampling density would not 

be a big issue (in fact, we could slow down the telemetry 

sampling and enjoy a reduction in compute cost for 

prognostics). However, in today's enterprise computing 

servers there exist highly nonlinear relationships 

between/among the telemetry metrics.  Just a few 

examples of reasons for the high nonlinearities in today's 

servers: 

CPU temperatures vs CPU core current and voltage 

vs CPU operating frequencies: 

In the "old days" (i.e. prior to about 5 yrs ago) all CPU 

chips dissipated heat in direct proportion to the 

"switching activity" going on inside the CPU.  Now that 

CPU technology is so small, there is significant "leakage 

power" inside the CPUs.  Leakage power is 

exponentially dependent upon CPU temperature.  So 

now days, the current, voltage, and frequency for the 

CPUs is a very complex nonlinear relationship between 

compute load, fan speed (which affects CPU 

temperature and hence leakage power), external ambient 

temperature, and even the altitude of the data center 

(because air at sea level has significantly greater cooling 

capability than thinner air for example in mile-high 

Denver).  This creates highly nonlinear relationships 

between the hundreds (to thousands) of physical 

telemetry time series, which in-turn are correlated with 

the various load and throughput "soft" telemetry metrics. 

Similarly, QoS telemetry metrics have reasonably linear 

interrelationships when there exists lots of free memory 

in systems.  However, when memory-intensive 

applications start to get close to the limit of available 

free memory, applications automatically start swapping 

to slower SSDs or to much slower spinning HDDs.  This 

introduces highly nonlinear relationships 

between/among many "soft" telemetry time series. 

As a final example of nonlinearities between/among the 

various classes of telemetry:  when IO pathways are 

"wide open" inside a server and at the interfaces between 

the IT systems and the external networks, then there are 

nice linear relationships between "flow" related 

telemetry and interarrival times for packets (IAT 

signatures).  However, as available bandwidth channels 

become saturated, there is now a complex nonlinear 

relationship between "flow" related metrics and latency 

(or IAT) metrics. 

Because of complex nonlinear relationships 

between/among the thousands of telemetry time series 

monitored by advanced prognostic algorithms, sampling 

density now matters a lot in terms of prognostic 

effectiveness for detecting anomalies either in QoS 

metrics (for QoS prognostics) or for Prognostic Cyber 

Security applications.  If we had simple, idealized 

systems where all relationships were always linear 

among monitored time series, then we could sample 

sparsely and just linearly interpolate between signals.  

However, because of the above (and other) sources of 

highly nonlinear phenomena in today's enterprise 

servers and networks, we need the highest sampling 

density we can get so that the pattern recognition 

algorithms can robustly and accurately "learn" the 

patterns of interaction across thousands of monitored 

time series metrics.  Moreover, because of the 

nonlinearities, simple interpolation will do no good for 

"filling in the blind spots". 

What the new empirical procedure brings is the 

capability to "densify" the sampling rates for all 

telemetry time series in IT systems and associated 

networks.  Not "analytical" densification (i.e. 

interpolation), but "empirical" densification.  This 

technique allows extremely fine granularity, in effect 

attaining arbitrarily high sampling rates even for 

systems for which it is physically and electronically 

impossible to increase the sampling rates.  This 

“sampling densification” innovation allows robust, 

accurate training of advanced pattern recognition 

algorithmics for high-sensitivity anomaly detection with 

ultra-low false-alarm and missed-alarm probabilities 

(FAPs and MAPs), for business critical applications 

such as QoS Prognostics and Prognostic Cyber Security 

applications for enterprise servers, and for IoT critical 

asset prognostic health monitoring. 
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2.1 Technique Description  

See Fig 1. which shows real thermal telemetry from a 

presently shipping thermal-mechanical asset for which 

high-sensitivity prognostic anomaly detection 

surveillance is being designed.  The fastest telemetry 

sampling rate possible for this class of assets is on the 

order of ~100 second intervals between observations.  

During this telemetry period shown in Fig 1, the 

sampling rate is far too coarse to enable accurate 

characterization of the rapid dynamics for training of 

advanced Predictive Analytics either for prognostic QoS 

anomaly detection or for prognostic security 

applications for the server.   

 

Figure 1.   Sparsely sampled thermal signal 

 

We introduce here a systematic empirical procedure that 

enables high-resolution, fine-grained definition of the 

telemetry dynamics for any server product even when 

the telemetry sampling rate on that product is 

constrained to very coarse sampling.  The high-accuracy 

fine-grained telemetry signatures can then be used for 

optimized training of ML and DL based Predictive 

Analytics algorithms.  Even though the optimized PA 

algorithms will then later be used on systems in the data 

center with lower sampling rates, the prognostic 

performance is tremendously enhanced by the fact that 

the prognostic algorithmics are trained, tuned, and 

optimized with high-sampling-rate telemetry metrics. 

We begin by generating a reproducible deterministic 

dynamic load profile that exercises the CPU, memory, 

and IO workloads through as wide a range as possible.  

Note: exercising compute, memory, and IO dynamics 

through as wide a range as possible is not a requirement 

nor an enabler for this telemetry sampling densification 

technique.  This technique will work equally well, even 

for a lightly-loaded system testbed configuration.  

Instead, the desire to exercise test systems through the 

widest range possible yields the most robust 

algorithmics for prognostics.  We typically stress test 

systems dynamically between the maximum possible 

range, i.e. from completely idle, to totally maxed out on 

CPU, memory utilization, and saturated IO channels, 

with lots of dynamic variations between those min/max 

ranges (to best characterize patterns between/among all 

classes of monitored telemetry signals).  For whatever 

dynamic stress exercisors are available to run on the 

testbed configuration, the ROI from this technique 

presented herein lies in the fact that the signal dynamics 

are far more accurately defined through dense, fine-

grained empirical observations. For this technique, we 

establish a fixed time window, W, during which the 

dynamic exerciser scripts will generate a deterministic 

(and hence exactly replicateable) load profile that 

exhibits rich dynamics in CPU utilization, memory 

utilization, and IO metrics.   It is desirable to set the 

width of W to a prime number of seconds (for example 

631 secs).   

Figure 2.  Sparse signal and densified signal after different 

rounds of densification 
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At the end of time window W, the exact same 

deterministic load profile is going to be run again.  The 

reason to set the window width time of the replicatable 

dynamic load profile time to a prime number will be 

described in the following subsection. 

2.2 Purpose for prime-number profile-

window-width (W) time  

The telemetry sampling rates that are hard-coded into 

systems and networks are almost always some fixed 

number of time units with a uniform sampling rate, such 

as once every 30 secs or 60 secs.  When this is the case, 

if the window-width W were to be some integer multiple 

of the sampling rate, e.g. exactly 10 minutes, then the 

samples in the technique would unintentionally overlay 

one another.  By picking a window-width W that is a 

prime number of seconds, we minimize the likelihood 

that when we run a reasonable number of experimental 

replications (say several dozen replications), that any 

samples will accidentally overlay one another.  Note that 

if the sampling rate for the telemetry is not fixed, but can 

be independently specified, then we would make the 

dynamic-stress-profile window-width W one prime 

number (e.g. 631 secs) and the sampling interval a 

second but different prime number (e.g. 79 secs).  In this 

case, samples would not accidentally overlay one 

another until 79*631 secs or about 14 hrs, which is far 

longer than needed for the technique below. 

 

Now we generate numerous replications of the 

deterministic load profile that are long enough to span a 

maximal range in CPU, memory, and IO “stress” levels 

and that span a prime-number of seconds.  By “numerous 

replications”, ten successive window replications would 

be sufficient, but the more dynamic profile replications 

one generates, the higher will be the resolution and 

accuracy for the “densified” telemetry signature 

characterizations.  We recommend several dozen 

replications and we have used 40 replications in our 

demonstration (see example in Fig. 2 for raw data and 

Fig. 3 for telemetry data that has been normalized to 

remove any variations from external ambient 

temperature). 

 

However many replicated profile windows are generated 

(N), we now analytically “cut up” the telemetry time 

series into N “chunks”, each of which is slightly longer 

than the window-width time W.  Extra time is needed at 

the beginning and end of each chunk for the “coherence-

optimization” step, wherein each chunk gets analytically 

slid forward and backward to optimize its coherence with 

respect to an iteratively defined “Reference Curve”, as 

defined in the densification-procedure flowchart below.   

 

Figure 3 Training set and testing set of MSET Prognostics 

 

It will become apparent that the Reference Curve starts 

out with very poor resolution and coarse granularity, but 

with each iteration of the procedure below, the Reference 

Curve attains increasingly higher resolution and 

increasingly finer grained definition, which we call 

“telemetry sample empirical densification.” 

 

It is noteworthy to point out the present technique is 

fundamentally different from numerical interpolation.  

Numerical interpolation is an analytical technique that 

“fills in” samples between measured observations.  No 

matter how sophisticated nor how “intelligent” the 

interpolation technique is, the “blind spot” in between 

measured observations is not made more accurate by 

filling in values that have no foundation in 

measurements.  The “sampling densification” procedure 
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is an empirical (vs analytical) technique and the 

sampling densification is based on real measurements 

that yield in the end a highly accurate fine-grained time-

series with an arbitrarily dense sampling rate even for 

systems for which a high sampling rate is 

physically/electronically impossible.  [By “arbitrarily 

high density”...the prognostics team can pick N to be as 

high as desired, for as long as the experimental testbed 

configuration is available.] 

 

2.3 Detailed Algorithmic Description 

First iteration:  

Step 1: Generate dynamic load profile through a wide 

range of stress intensity (ideally spanning the envelope 

from completely idle to totally maxed out in CPU 

utilization, memory utilization, and IO intensity) on the 

target system such that the time window of the dynamic 

load profile is a prime number of seconds and start 

system monitoring with the Continuous System 

Telemetry Harness (CSTH) telemetry [Refs 1-3].  A 

prime number is selected for the load profile-window so 

that if the system sensor data is uniformly sampled, the 

CSTH samples from the various load profiles are 

obtained at different times relative to the start of the load 

profile window W.  [Implementation note: if the system 

allows specification of the sampling time, then it is 

further desirable to set the sampling intervals to also be 

a prime number of clock units, but a different prime 

number than the profile window width time W.] 

Step 2: Pick the first complete dynamic load profile as 

the Reference Exerciser Profile.  

Step 3: Pick the second chunk and slide the data 

forward/backward to optimize fit (maximum cross 

correlation) with the Reference Exerciser Profile.  

Merge this second chunk with the Reference Exerciser 

Profile to generate an improved Reference Exerciser 

Profile.  

Step 4: Repeat Steps 2 & 3 above for the subsequent 

chunks, each time merging the resulting chunk with the 

Reference Exerciser Profile and updating it.  

Step 5: Once all the N available chunks are coherence-

optimized and merged, perform a second pass through 

all the chunks starting with the first chunk.  In this 

second pass, before optimizing for a selected chunk, the 

data generated from the selected chunk is removed from 

the Reference Exerciser Profile.  After optimizing and 

realigning, the chunk is merged back into the reference 

Exerciser Profile.  This second pass is done so that the 

effects of any abnormalities or artifacts that may have 

been present in the earliest chunks during the first 

iteration are minimized.  

Step 6: Take the final Reference Exerciser Profile and 

convert the timestamps in all chunks to times (in 

seconds) relative to the beginning of the chunk.  

Step 7: To smooth out this data, we now apply in the 

preferred embodiment a moving-window ensemble 

average function with a width of 20 samples. 

Step 8: Take the data from Step 7 and perform iterative 

upsampling of the data to make the time intervals exactly 

uniform.  (Note: Step 7 produces densified sampling, but 

the sampling intervals are not necessarily uniform.  Step 

8 maintains the high accuracy from Step 7 but 

transforms the sampling intervals to be exactly equal.)  

Step 9: The data from Step 8 is the final densified data.  

See Fig 4 showing the accuracy of prediction of a cluster 

of correlated signals as the sampling densification 

increases.  The pattern recognition tool used in this 

investigation is the Multivariate State Estimation 

Technique (MSET) [Refs 4-7].  Plotted in this figure is 

the root-mean-square-error (RMSE) for MSET 

estimates, which is a measure of the uncertainty if the 

trained MSET model, as a function of the number of 

empirical densification rounds. 

Figure 5 shows a pair of illustrative results of the 

"Telemetric Sampling Densification" procedure. This 

new procedure effectively produces 1-second sampling 

resolution from data that, because of industry standard 

conventions, had a minimum sampling interval of 50 

seconds.  Figure 5 contrasts the raw telemetry data 

available from industry-standard system bus and ILOM 

sampling capabilities (in red), superimposed on the very 

high resolution, fine-grained dynamic telemetry 

signature attainable with the new "Telemetric Sampling 

Densification" innovation introduced in this disclosure. 
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Figure 4 RMSE of MSET estimation of all 5 signals 

 

 

Figure 5. Raw telemetry data and densified signal. 

The reader is invited to contrast Figure 1, showing the 

sampling rate attainable on present generation enterprise 

servers that have present industry-standard constraints, 

with the "Telemetric Sampling Densification" fine-grain 

high-accuracy thermal-dynamic profiles attainable by 

the new Oracle innovation introduced herein (Fig. 5).   

This technique allows fine-granularity high-resolution 

telemetry dynamic characterization for training, tuning, 

and optimizing prognostic algorithmics, in effect 

attaining arbitrarily high sampling rates even for IT 

systems and networks for which it is physically and 

electronically impossible to increase the sampling rates.

  

Conclusion 

The Telemetry Sampling Densification technique 

presented in this paper provides a capability to obtain 

rich, high-sampling-density dynamic signatures for any 

digitized time series telemetry from testbed and/or asset 

prototype configurations.  The technique allows 

arbitrarily high telemetric sampling densities for training 

of advanced Machine Learning and Deep Learning 

prognostic algorithms, which results in higher prognostic 

sensitivity for detecting incipient anomalies earlier, and 

with lower false-alarm and missed-alarm probabilities 

(FAPs and MAPs). 
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