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A B S T R A C T

The rapidly growing capacity of globally distributed solar generation systems (DSGs) has imposed new
challenges for solar forecasting research: the need for high-fidelity spatial solar forecasts across utility-
scale areas with minimized capital, generalization, and maintenance costs. The majority of solar forecasting
approaches were developed for centralized solar power plants, which only concern one or a few locations.
Therefore, this work reviews the state-of-the-art methods for spatial solar forecasting that integrate deep
learning and remote sensing, potentially capable of serving numerous DSGs simultaneously. This work has four
missions: (1) provide a review of available remote-sensing- and deep-learning-based spatial solar forecasting
methods; (2) provide suggestions of practical tools to accelerate the research and deployment of spatial solar
forecasting methods; (3) identify challenges of spatial solar forecasting for sparsely distributed DSGs; and (4)
discuss prospective approaches to further enhance both the performance and value of spatial solar forecasts,
such as the attention mechanism, sequence analysis, or probabilistic forecasts. This work reveals that practical
spatial solar forecasting for DSGs is still in its infancy, thus more research efforts should be involved to develop
a new generation of forecasting engines, which could cost-effectively address the real-time needs of integrating
massive regional DSGs.
1. Introduction

Motivated by the societal need for sustainable development around
the world, the global installed capacity of solar photovoltaic (PV)
has grown rapidly over the past decade and is expected to increase
by 20-fold and reach 22% of the electricity market by 2050 [1,2].
A variety of studies have confirmed that the accurate forecasting of
weather-dependent solar fluctuations is key to integrating the volatile
and non-dispatchable solar energy into the power grid [3–5]. How-
ever, accurately forecasting either solar irradiance or solar power is
a challenging task because of the complex meteorological processes.
Specifically, the properties and dynamics of clouds, which exhibit high
spatial and temporal variability, contribute to this complexity [6].
In addition, the rapidly growing installation of PV systems, particu-
larly distributed solar generation systems (DSGs) over large areas, has
imposed new challenges to solar forecasting and grid integration. Com-
pared to centralized solar energy systems, DSGs offer several benefits
including proximity to consumers, minimized transmission loss, lower
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investment entry barriers, local grid stabilization, and flexible installa-
tion options that optimize land use, such as rooftop or floating PV [7,8].
Therefore, recent installations of DSGs have markedly outpaced those of
centralized solar systems, especially in densely populated regions with
limited land availability [9]. With hundreds of grid-connected DSGs
in operation [10], regional-scale spatial solar forecasting is essential
for the planning, integrating, regulating, and managing of solar power
generations over a large area [11].

Motivated by the increasing demands of solar integration, different
solar forecasting approaches have been proposed and discussed in
the literature, such as numerical weather prediction (NWP), physical
models that are based on either local- or remote-sensing techniques,
data-driven methods based on regressive, machine learning, and deep
learning approaches, and hybrid approaches that integrate multiple
methods to maximize the forecasting performance [2,3,12]. The com-
monly employed data sources include in-situ measurement of solar
irradiance [13] and DSGs power generation [14], sky images [11,15],
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Nomenclature

Abbreviations

ABI Advanced Baseline Imager
ADAM Adaptive moment estimation
AGRI Advanced Geostationary Radiation Imager
AHI Advanced Himawari Imager
AMI Advanced Meteorological Imager
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
biLSTM Bidirectional long short-term memory
CCI Cloud clearness index
CMA China Meteorological Administration
CNN Convolutional neural network
COMS Communication, Ocean and Meteorological Satellite
DES Double exponential smoothing
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DNN Deep neural network
DSG Distributed solar generation
ECMWF European Centre for Medium-range Weather Fore-

casts
ELM Extreme learning machine
EMOS Ensemble model output statistics
EUMETSAT European Organization for the Exploitation of

Meteorological Satellite
FFNN Feed-forward neural networks
GAN Generative adversarial network
GBR Gradient boosting regression
GFS Global Forecast System
GHI Global horizontal irradiance
GK2A/2B Geostationary Korean Multi-purpose Satellite 2A/2B
GNN Graph neural network
GOES Geostationary Operational Environmental Satellites
GRAPES Global and Regional Assimilation and Prediction

System
GRU Gated recurrent unit
HARMONIE Hirlam–Aladin Research towards Mesoscale Opera-

tional NWP In Euromed
HRRR High-Resolution Rapid Refresh
KMA Korea Meteorological Administration
kNN 𝑘 Nearest neighbor
KSI Kolmogorov–Smirnov integral
LSTM Long short-term memory
LSTM-FC Long short-term memory-fully connected
MAE Mean absolute error
MBE Mean bias error
MLP Multilayer perceptron
MODIS Moderate resolution imaging spectroradiometer
NAM North American Mesoscale
NMSC National Meteorological Satellite Center
NSRDB National Solar Radiation Database
NWP Numerical weather prediction
PV Photovoltaic
RAP Rapid Refresh model
ReLU Rectified linear unit
RF Random forest
rMAE Relative mean absolute error
RMSE Root mean square error
2

RNN Recurrent neural network
ROI Region of interest
rRMSE Relative root mean square error
SARIMAX Seasonal autoregressive integrated moving average

with exogenous factors
SEVIRI Spinning Enhanced Visible and infrared Imager
SVM Support vector machine
SVR Support vector regression
WRF Weather Research and Forecasting
XGBoost Extreme gradient boosting

Notations

𝛼 Coefficient of relative positions between satellite
and target location

𝛾ℎ The autocorrelation at lag ℎ
�̂� Clear-sky index forecast
𝐼 Solar irradiance/power forecast
𝜅 Clear-sky index
𝜇 Climatology reference term
𝜌 Correlation coefficient
𝜎 Standard deviation
𝜃𝑧 Solar zenith angle
�̃� Normalized pixel values
𝑐 Clear-sky expectation of irradiance/power
𝐻𝑎 Rényi entropy
𝐼 Solar irradiance/power
𝐿 Pixel value of satellite images
𝐿′ Normalized pixel values by solar zenith angle
𝑁 Number of days
𝑅2 Coefficient of determination
𝑠 Forecast skill

Subscripts

𝑓 Forecasts of interest
ℎ Forecast horizon
𝑖 Number of row in a matrix
𝑗 Number of column in a matrix
𝑝 Perfect forecasts
𝑟 Reference forecasts
𝑡 Time

Superscripts

𝑏 Spectral band

meteorological variables (e.g., temperature, relative humidity, wind
direction or wind speed) that are measured or predicted by NWP
models [16–18], and remote-sensing satellite data products [19–21].
For solar forecasting research, the spatial and temporal scales of the
aforementioned data sources are illustrated in Fig. 1. For spatial fore-
casts over hundreds of square kilometers, the choices of data are
remote-sensing imagery and NWP output. Since comprehensive details
of state-of-the-art NWP models are widely accessible elsewhere, such
as the articles by Wang et al. [22], Yang et al. [23] and Jimenez et al.
[24], this work only briefly summarizes a few NWP models commonly
used in solar forecasting research, as presented in Appendix A.

Remote sensing has emerged as a reliable and informative data
source for solar resource assessment and forecasting. Irradiance derived
thereof has wide geographical coverages and thus partly eliminates
the need for local instrumentation investment [26]. Since the presence
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Fig. 1. Temporal and spatial coverage of commonly employed techniques for obtaining
exogenous data.
Source: Modified based on [2,25].

and movement of clouds are highly relevant to surface irradiance
and thus solar power [27], the inclusion of cloud information de-
rived from satellite imagery as exogenous inputs has been used to
enhance forecasting performance [3,28–30]. Images from the latest-
generation geostationary satellites are currently being sampled every
5 to 15 min, which enables not only intra-day but also intra-hour solar
forecasting, which is particularly useful for power system operations,
such as load following and real-time electricity trading [30,31]. On
the other hand, the spatial coverage of satellite-based solar forecasts
is beneficial for the utility-scale market operators to balance grids
for cities or even states [32,33]. Traditionally, remote-sensing-based
solar forecasting is performed under a physical setting, in which the
cloud advection and diffusion processes are captured and described [25,
34]. However, statistically determining the cloud dynamics and its
impact on ground irradiance challenge these physics-based models,
often resulting in large forecast errors [35]. Therefore, data-driven
methods, including deep learning, have been introduced to enhance the
remote-sensing-based solar forecasting models [12].

Deep learning methods (e.g., deep neural networks, or DNNs) have
brought breakthroughs in many fields such as computer vision and
speech recognition [36]. Evaluated with various datasets, deep learning
methods have shown superior performance in terms of accuracy, gen-
eralization ability, and robustness, as compared to conventional rule-
based models or machine learning models [37–40]. The convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) are
particularly useful in computer vision and time series analysis, respec-
tively [41,42]. With no exception, solar forecasting, as a fast-advancing
field, has already seen deep learning applications, which have shown
superior performance over physical or conventional machine learning
methods on many occasions [12,43,44].

However, due to the end-to-end (also known as ‘‘black box’’) na-
ture of data-driven techniques, deep-learning-based solar forecasting
methods are mostly developed using locally collected data as training
targets. Therefore, most of these models are developed for a limited
number of point locations and can hardly be transferred or generalized
to new locations beyond the training set [45]. This is also confined by
the fact that deep learning models, unlike statistical regression models
(e.g., linear regression), do not have ease-to-express function forms.
So models fitted in one scenario are not conducive to adoption in
another scenario, unless the code and data are passed on in their exact
form, which has rarely been the case under the current ‘‘publish or
perish’’ research regime. Consequently, only a few studies have utilized
both satellite imagery and deep learning to perform spatial/regional
forecasting for solar irradiance/power [46,47]. For example, by the
3

year 2022, searching keywords such as deep learning with solar forecast
or PV forecast returns more than 2000 publications from the Web
of Science Core Collection. However, when searching deep learning
with spatial solar forecast, the number of return publications decreases
to just 45, among which a fraction use satellite data. Consequently,
how to best perform satellite-based spatial solar forecasting using deep
learning techniques has not been standardized and the related research
gaps have not been identified.

Therefore, in this work, a thorough literature review of spatial
solar forecasting methods that utilize both satellite imagery and deep
learning is conducted, particularly for large-area applications such as
grid integration. The main contributions of this work are summarized
as follows:

• This work provides a comprehensive summary of spatial solar
forecasting methods that leverage satellite data and deep learn-
ing, a topic not previously reviewed in detail.

• Practical recommendations on end-to-end data-driven forecasting
and essential model development tools are provided, such as
remote-sensing satellite data sources or deep learning implemen-
tation frameworks. This information is beneficial for researchers
to conduct research and model development along this line more
efficiently.

• Existing challenges of spatial solar forecasting are identified,
providing valuable insights for the development and optimization
of future methods for hundreds of DSGs across a large spatial area.

• To overcome the identified challenges, several potential appro-
aches are provided that could potentially improve the perfor-
mance and the utility/practical value of DSG power forecasts.
These approaches mainly refer to attention mechanisms, sequence
analyses, large-scale models, and spatial probabilistic forecasting
techniques.

In what follows, basic considerations for spatial solar forecasts
are summarized in Section 2. Spatial solar forecasting methods are
reviewed in Sections Section 3. In Section 4, major challenges are iden-
tified and an outlook of potential solutions is provided. The conclusions
are summarized in Section 5. It should be again highlighted that the
term ‘‘solar forecasting’’, whenever used, denotes both solar irradiance
forecasting and solar power forecasting, not just in this work, but in
this field in general [43].

2. Basic considerations of spatial solar forecasting

In this section, the data-driven spatial solar forecasting procedure
is firstly presented (Section 2.1). Then the most advanced geosta-
tionary satellite data around the globe are thoroughly summarized
(Section 2.2), followed by common practices to process the satellite
data before feeding into the forecasting models (Section 2.3). The
forecasting performance assessment methods are briefly summarized in
Section 2.4.

2.1. Overview of data-driven spatial forecasting procedure

The general data-driven spatial solar forecasting procedure is il-
lustrated in Fig. 2. The procedure can be divided into three blocks,
including (1) data sources, (2) data processing methods, and (3) fore-
casting model development, assessment, and optimization. The data
employed predominantly originate from local sensors, satellite obser-
vations, and numerical weather prediction (NWP) models. Then, the
data are processed by methods such as filtering, normalization, or
feature extraction, during which the physical considerations such as
clear-sky modeling are integrated, to isolate the known (i.e., calculable)
deterministic trends and seasonality in data as far as possible. The time
stamps of the processed data from different sources are then matched
to serve as inputs and training targets for forecasting models. Different
algorithms can be employed to perform either single-location forecasts
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Fig. 2. Data-driven spatial forecasting procedure.
or spatial forecasts. The forecast accuracy is quantified by different
metrics and the preliminary model is further optimized to achieve the
best performance. Due to the scarcity of local-sensing data over a large
area and the recent advancements of geostationary satellite imagers,
remote-sensing data sources have become more applicable for spatial
forecasting applications. Solar irradiance predictions from NWP can
be used either as model inputs or as validation benchmarks for the
developed forecasting models.

The spatio-temporal resolution of satellite-based forecasts is intrinsi-
cally tied to the resolution of the satellite data employed—the highest-
resolution product has a native resolution of 500 m [48] with most
being 2–4 km. The irradiance prediction for a satellite pixel is applica-
ble to all DSGs within the coverage area of that pixel. However, such
a resolution may be inadequate for forecasts that necessitate a higher
spatio-temporal resolution, such as intra-hour forecasting [12], par-
ticularly under partly cloudy conditions where ground irradiance can
substantially decrease within a minute [49,50]. To accommodate fore-
casting systems requiring higher spatio-temporal resolutions, ground-
based sensors or cameras are advantageous for capturing minute-scale
fluctuations in cloud cover and ground-based irradiance. Subsequent
spatial analysis methods, including inverse distance weighting (IDW),
kriging, or nearest neighbor methods, are implemented to derive values
for locations without ground-based sensors. The forecasting perfor-
mance of these ground-based systems is notably influenced by the
density of the sensor network [11]. However, the installation and
maintenance of a dense sensor network are both costly and resource-
intensive. Consequently, selecting the appropriate data sources and
forecasting methods based on application requirements proves to be of
paramount importance.

2.2. Geostationary satellite data

Major geostationary satellite data sources that are commonly em-
ployed for solar forecasting are summarized here, including Geostation-
ary Operational Environmental Satellites (GOES), Meteosat, Himawari,
Fengyun, and Chollian. It should be noted that each of these mentioned
names refers to a series of satellites rather than just a single one. The
satellites are operated and managed by different authorities, with dif-
ferent onboard imagers, data resolutions, and coverages, as presented
in Table 1 and Fig. 3. The advanced satellite imagers are capable of
capturing upwelling radiance data from different spectral bands, which
4

enables the monitoring of different atmospheric constituents, especially
the optical and physical properties of clouds (as shown in Fig. 4). The
comparison of visible, near-infrared, and infrared spectral bands of
different satellites are illustrated in Fig. 4 and Table A.2.

The GOES series has been operated by the National Oceanic and
Atmospheric Administration, and the National Aeronautics and Space
Administration of the United States since 1975.

• Imager: Advanced Baseline Imager (ABI).
• Level 1 data: the upwelling radiance of each spectral band.
• Level 2 data: aerosol detection, aerosol optical depth, clear sky

masks, cloud layers/heights, cloud and moisture imagery, cloud
optical depth, cloud particle size distribution, cloud top height,
cloud top phase, cloud top pressure, cloud top temperature, de-
rived motion winds, derived stability indices, downward short-
wave radiation at surface, fire/hot spot characterization, land sur-
face albedo, land surface bidirectional reflectance factor, land sur-
face temperature (skin), legacy vertical moisture profile, legacy
vertical temperature profile, radiances, rainfall rate, reflected
shortwave radiation from the top of atmosphere, sea and lake
ice age, concentration and motion, sea surface temperature, snow
cover, total precipitable water, volcanic ash detection and height
[53].

• Data retrieval: open source for non-commercial use and can be
downloaded directly from Amazon Web Services.1

European Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT) is an intergovernmental organization that is mostly
funded by European Union countries. The Meteosat satellite series
operated by EUMETSAT provides useful data products for meteorology
and climate applications. Meteosat-1 is the first satellite of the series
and was launched in November 1977. There are seven satellites of the
first generation of Meteosat and four satellites of the second gener-
ation of Meteosat, including the currently operating Meteosat-9 and
Meteosat-11.

• Imager: Spinning Enhanced Visible and InfraRed Imager (SEVIRI).
• Level 1.5 data: the image radiometry with linearization and equal-

ization of each spectral band.

1 https://noaa-goes16.s3.amazonaws.com/index.html, https://noaa-goes17
.s3.amazonaws.com/index.html.
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Table 1
Metadata of different operational geostationary satellites.

Satellite name Position Launch time Number of bands Spatial resolution Observation area and temporal resolution

GOES-16
GOES-17a

75.2◦W
137.3◦W

Nov, 2016
Mar, 2018

16 b1–b2: 0.5–1 km
b3–b6: 1–2 km
b7–b16: 2 km

Full disk (15 min)
USA area (5 min)
Selected areas (0.5 min)

Meteosat-9
Meteosat-11

45.5◦E
0◦

Dec, 2005
Jul, 2015

12 b1–b3: 1 km
b4–b12: 3 km

Full disk (15 min)
European area (5 min)

Himawari-8 140.7◦E Oct, 2014 16 b1–b3: 0.5–2 km
b4–b6: 1–2 km
b7–b16: 2 km

Full disk (10 min)
Japan area (2.5 min)
Target area (0.5 min)
Lanmark areas (0.5 min)

Fengyun-4A
Fengyun-4B

104.7◦E
123.5◦E

Dec, 2016
Jun, 2021

14 b1–b2: 0.5–1 km
b3–b6: 2–4 km
b7–b14: 4 km

Full disk (15 min)
China area (4–5 min)

GK2A 128.2◦E Dec, 2018 16 b1–b4: 0.5–1 km
b5–b6: 2 km
b7–b16: 2 km

Full disk (10 min)
South Korea area (2.5 min)

a GOES-17 is replaced by GOES-18 in 2023, and its position is at 137.0◦W.
Fig. 3. The spatial observation area of the major operational geostationary satellites. The depicted global annual irradiance map is retrieved from the Solargis website.
Fig. 4. (a) Illustration of different spectral bands of different satellites. (b) Downwelling ground-level solar shortwave (𝜆 < 4 μm) and atmospheric longwave (𝜆 > 4 μm) flux density
for clear and cloudy conditions. The spectral longwave and shortwave flux densities are calculated using the radiative transfer models presented in [51,52], respectively.
5
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• Level 2 data: aerosol properties over the sea, cloud analysis, cloud
Analysis image, clear-sky reflectance map, divergence, high-
resolution precipitation index, normalized difference vegetation
index/normalized difference vegetation index decadal, tropo-
spheric humidity [54].

• Data retrieval: open source and can be downloaded from the
EUMETSAT website2 for non-commercial use.

Himawari is a series of geostationary weather satellites launched
nd operated by the Japan Meteorological Agency. Himawari-8 was
aunched in October 2014 and has been operational since July 2015,
iming to provide data related to weather forecasting and climate
hange prediction.

• Imager: Advanced Himawari Imager (AHI).
• Level 1 data: albedo in solar spectrum, brightness temperature

in the atmospheric longwave spectrum, satellite zenith angle,
satellite azimuth angle, solar zenith angle, solar azimuth angle,
and observation hour.

• Level 2 and level 3 data: aerosol property, sea surface tem-
perature, nighttime sea surface temperature, shortwave radia-
tion/photosynthetically available radiation, chlorophyll-a, cloud
property (day-time only) and wildfire [55].

• Data retrieval: open source and can be downloaded from the
Japan Aerospace Exploration Agency website3 for non-commercial
use.

• Notes: Himawari-8 has both full-disk and regional (i.e., over
greater Japan) scans, with the latter being more frequent and
more refined in resolution than the former. The scanning for the
target area and landmark areas is determined based on changes
in weather conditions.

The Fengyun series satellites are meteorological satellites devel-
ped by the Shanghai Institute of Aerospace Technology, China. The
engyun series is mainly used for services such as weather analysis and
orecasting, or environmental and disaster monitoring. There are sev-
ral pre-determined positions for Fengyun satellites, such as 104.7◦E,
6.5◦E, or 123.5◦E. For Fengyun-4A, the fixed position has been at
04.7◦E since 2017.

• Imager: Advanced Geostationary Radiation Imager (AGRI).
• Level 1 data: geo-located and calibrated spectral radiance.
• Level 2 and level 3 data: cloud mask, cloud type, total cloud

amount, rainfall rate/quantitative precipitation estimate, atmo-
spheric motion vector, outgoing longwave radiation, black body
brightness temperature, surface solar irradiance, legacy vertical
moisture profile, layer precipitable water, aerosol detection (in-
cluding smoke and dust), sea surface temperature (skin), snow
cover, land surface (skin) temperature, cloud-top height, cloud-
top pressure, cloud optical depth, cloud liquid water, cloud parti-
cle size distribution, cloud phase, downward longwave radiation
at surface, upward longwave radiation at surface, reflected short-
wave radiation at top of atmosphere, aerosol optical depth, con-
vective initiation, fire/hot spot characterization, fog detection,
land surface emissivity, land surface temperature, land surface
albedo and tropopause folding turbulence prediction [56].

• Data retrieval: open source and can be downloaded from the
China Meteorological Administration (CMA) website4 with the
requested permit for non-commercial use.

Chollian is the geostationary satellite series launched and operated
y South Korea, which is used for observing oceanography and mete-
rology. The series contains 3 satellites: Communication, Ocean and

2 https://www.eumetsat.int/eumetsat-data-store.
3 https://www.eorc.jaxa.jp/ptree/.
4
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https://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx.
Meteorological Satellite (COMS), Geostationary-Korean Multi-purpose
Satellite-2A (Geo-KOMPSAT-2A, or GK2A) and Geo-KOMPSAT-2B
(GK2B), all operated by the Korea Aerospace Research Institute.

• Imager: Advanced Meteorological Imager (AMI).
• Level 1A data: units of calibrated radiance without navigation.
• Level 1B data: calibrated, navigated, and in-pixel-shape spectral

radiation.
• Primary meteorological products and meteorological products:

land surface emissivity, surface albedo, snow depth, sea surface
current, cloud type, cloud amount, cloud optical depth, cloud ef-
fective radius, cloud liquid water path, cloud layer/height, prob-
ability of rainfall, potential accumulated rainfall, angstrom expo-
nent product, visibility, reflected shortwave radiation, downward
shortwave radiation at surface, absorbed shortwave radiation
at surface, downward longwave radiation at surface, upward
longwave radiation at surface, outgoing longwave radiation, ic-
ing, overshooting top, SO2 detection, total precipitable water,
tropopause folding and turbulence detection [57].

• Data retrieval: open source and can be downloaded from National
Meteorological Satellite Center5 (NMSC) for non-commercial use.

.3. Processing of satellite data

Since the observation areas of a satellite are usually much larger
han the region of interest (ROI) to spatial solar forecasting, such
s the region covering a cluster of DSG systems connected to the
ame feeder node, the initial step in the processing of satellite data
nvolves the selection of an appropriate rectangular region that fully
ncompasses the ROI. To enhance the performance and robustness of
olar forecasting applications, it is essential to pre-process the satellite
ata prior to developing the forecasting model [31].

A fundamental and time-tested approach for normalization is the
inmax method [58], which is a similar but weaker version of the
ell-known Heliosat-2 method in this field. It takes the form:

̃ 𝑏
𝑖𝑗,𝑡 =

𝐿𝑏
𝑖𝑗,𝑡 − min

(

𝐿𝑏)

max
(

𝐿𝑏
)

− min
(

𝐿𝑏
) , (1)

where 𝐿𝑏
𝑖𝑗,𝑡 is the value of the pixel situated at the 𝑖th-row and 𝑗th-

column in a satellite image of spectral band 𝑏 at time 𝑡. This value
may represent radiance, albedo, or brightness temperature, contingent
on the data product sourced from the specific satellite. min

(

𝐿𝑏) and
max

(

𝐿𝑏) denote the minimum and maximum pixel values across all
images of band 𝑏 in the entire dataset, respectively.

In addition to this standard normalization typically employed in
computer vision, seasonality removal should be considered to enhance
model performance and robustness. Although the utilization of clear-
sky models for eliminating seasonality from solar irradiance time series
has become a standard practice in solar resource assessment and fore-
casting [59], a significant portion of data-driven forecasting models
in the extant literature neglects to incorporate seasonality removal
when using satellite data as inputs. This omission leads to a failure to
acknowledge the influence of inherent diurnal and seasonal variations
on the upwelling radiance within the solar spectrum. Ensuring the
independence of external cloud-related inputs, such as the cloud index
(CI), from the time of year and season is crucial for enhancing the
robustness of solar forecasting [60]. For instance, high-albedo pixels in
satellite images, which could be snow or ice, may be incorrectly iden-
tified as clouds. Therefore, these upwelling radiance values recorded
in satellite data are also subject to inherent diurnal and seasonal
variations, potentially introducing noise into the input data and causing
significant prediction errors.

5 https://datasvc.nmsc.kma.go.kr/datasvc/html/main/main.do.

https://www.eumetsat.int/eumetsat-data-store
https://www.eorc.jaxa.jp/ptree/
https://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx
https://datasvc.nmsc.kma.go.kr/datasvc/html/main/main.do
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To remove the seasonality in satellite data, Matsunobu et al. [61]
proposed a method that weighs each satellite spectral band and re-
moves diurnal effects (only for bands within the solar spectrum). This
normalization method is mathematically expressed as:

�̃�𝑏
𝑖𝑗,𝑡 = 1 −

𝐿𝑏
𝑖𝑗,𝑡 − min

(

𝐿𝑏)

cos 𝜃𝑧,𝑡
[

max
(

𝐿𝑏
)

− min
(

𝐿𝑏
)] (2)

where 𝜃𝑧,𝑡 denotes the solar zenith angle at time 𝑡.
Furthermore, Si et al. [19] proposed an advanced pre-processing

ethod designed to remove diurnal effects while preserving valuable
nformation. The initial step in this method involves determining the
oefficient (𝛼) related to the relative positions between the satellite

and target locations. This is optimally achieved by minimizing the
Euclidean distance between the satellite albedo image and ground
albedo images, under the assumption that the ground albedo within the
target area remains constant over a short time period [19]. The value
of a single pixel is then normalized by the solar zenith angle as:

𝐿′𝑏
𝑖𝑗,𝑡 =

𝐿𝑏
𝑖𝑗,𝑡

(cos 𝜃𝑧,𝑡)𝛼
. (3)

Subsequently, 𝐿′𝑏
𝑖𝑗,𝑡 is further normalized to �̃�𝑏

𝑖𝑗,𝑡 employing the 𝑚𝑖𝑛𝑚𝑎𝑥
ethod as presented in Eq. (1). The method presented by Si et al.

19] is explicitly designed for visible spectral bands, and its applica-
ility to other bands cannot be assured without further research and
xperimentation.

Additionally, the semi-empirical Heliosat method can be utilized for
eriving a cloud index map from satellite images as a data processing
ethod [48,62–64]. For instance, this can be represented as:

I𝑖𝑗,𝑡 =
𝐿𝑏
𝑖𝑗,𝑡 − min

(

𝐿𝑏
𝑖𝑗,𝑡−𝑁∶𝑡

)

max
(

𝐿𝑏
𝑡
)

− min
(

𝐿𝑏
𝑖𝑗,𝑡−𝑁∶𝑡

) (4)

here CI𝑖𝑗,𝑡 is the cloud index of the pixel situated at the 𝑖-row and
-column in a satellite image at time 𝑡. min

(

𝐿𝑏
𝑖𝑗,𝑡−𝑁∶𝑡

)

is the minimum
ixel value over the preceding 𝑁 days (𝑁 = 10 as per [62]) at the
ame time, which approximates the corresponding clear sky values, and
ax

(

𝐿𝑏
𝑡
)

is the maximum pixel value in the current image.
An alternative approach for removing the diurnal and seasonal vari-

tions inherent in satellite data involves the implementation of cloud
etection. This technique involves the segmentation or identification of
loud cover in satellite imagery, which is subsequently utilized as input
or forecasting models. Cloud detection can be achieved through tradi-
ional pixel color ratio methodologies [65], or through the application
f more sophisticated end-to-end deep learning techniques [61,66–68].
hese methods generate binary or three-state cloud maps by denoting
ixels as clear skies, thin clouds, or thick clouds. A more comprehensive
verview of cloud detection methodologies can be found in [69].
otwithstanding, the incorporation of a cloud-detection process com-
licates the overarching forecasting system, potentially resulting in
xtended inference times. Moreover, the accuracy of the cloud detec-
ion process itself may be susceptible to the influence of the diurnal and
easonal variations of satellite data.

Despite these various efforts, a majority of the solar forecasting
iterature appears to have largely overlooked the importance of pre-
rocessing satellite data, particularly in terms of seasonality removal,
rior to the model estimation phase.

.4. Performance assessment of spatial solar forecasts

At the current stage of development of the field, the performance
ssessment of spatial forecasts adapts and resembles that of forecasts
or point locations. The assessment is usually performed by comparing
he model predictions 𝐼 against measured values 𝐼 , which are also
eferred to as the ground truth or labels. Solar forecasts are continuous
7

n values, and there are many scoring functions (i.e., error metrics) that
can be used to quantify the forecast quality. Some commonly used met-
rics are presented in Table A.3, among which a highly recommended
scoring function for solar forecasting is the root mean square error
(RMSE) [59].

However, forecast accuracies such as RMSE attained from different
forecasting contexts cannot be compared directly, because accuracy
is highly influenced by factors such as diverse geographic, seasonal,
climatic, or particularly meteorological conditions [12,70]. Therefore,
reference models often serve as the benchmark to compare the per-
formance of models proposed in different studies, which use differ-
ent datasets for model development and evaluation. The irradiance
forecasted by NWP is sometimes used as a benchmark for forecasts
generated by data-driven and/or hybrid methods. The performance of
NWP models has been often found to be outperformed by satellite-based
or data-driven methods when the forecast horizons are less than four
hours [71,72]. In addition, advanced deep learning methods usually
employ conventional machine learning models as the reference, and
hybrid approaches often employ their individual building blocks as the
reference [3,12]. To offer a relative independent baseline, a once-
popular standard of reference is persistence, which assumes that the
current situation persists into the future:

𝐼𝑡+ℎ = 𝐼𝑡, (5)

where 𝐼 could be either solar irradiance or power. 𝐼𝑡 is 𝐼 at current
ime 𝑡, 𝐼 is the forecast of the persistence model, and ℎ is the forecast

horizon. To consider the inherent diurnal cycles in solar irradiance
or power time series, the smart persistence (SP) [73,74] has been
proposed:

̂ 𝑡+ℎ = 𝜅𝑡, (6)

where 𝜅 is the clear-sky index [3], which is defined as solar irradiance
or power divided by its clear-sky counterpart:

𝜅𝑡 = 𝐼𝑡∕𝑐𝑡, (7)

where 𝑐𝑡 represents the clear-sky expectation of the forecast variable in
question.

Note that the persistence model has shown excellent performance
during clear weather conditions. However, the error of the persistence
model increases with the forecast horizon rapidly. Therefore, the op-
timal convex climatology–persistence combination has been advocated
by Yang [75,76]:

̂ 𝑡+ℎ = 𝛾ℎ𝜅𝑡 + (1 − 𝛾ℎ)𝜇, (8)

where 𝛾ℎ is the autocorrelation at lag ℎ with a value between −1 and
1, which statistically approaches zero with the increase of forecast
horizon. More details about the practical calculation of 𝛾ℎ can be found
in [75,76], which is important because the solar time series contains
nighttime gaps. 𝜇 is the climatology reference term [76], which is
single-valued internal climatology (i.e., the mean value of 𝜅𝑡 in the
verification set). The error of the convex model can be mathematically
shown to be always less than both the persistence and the climatology
references, thus serving as a better standard of reference [59].

Based on the aforementioned reference models, forecast skill (𝑠)
is proposed to quantify the performance of a newly developed model
when compared with the persistence model [73]:

𝑠 =
RMSE𝑓 − RMSE𝑟

RMSE𝑝 − RMSE𝑟
. (9)

where the RMSE𝑓 , RMSE𝑝, RMSE𝑟 are performances of the forecasts
from the model of interest, perfect forecasts, and reference forecasts,
respectively. Since perfect forecasts are usually unattainable—except
when dynamical ensemble NWP forecasts are available [77]—one has
no choice but to assume the perfect forecasts have an RMSE of zero. In
that, the above skill score equation is reduced to:

𝑠 = 1 −
RMSE𝑓 . (10)
RMSE𝑟
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Fig. 5. Summary of the reviewed references. (a) Forecast variables, where solar radiation includes global horizontal irradiance (GHI), direct normal irradiance (DNI) and diffuse
horizontal irradiance (DHI). (b) Forecast horizon: For papers with two or more forecast horizons, those are counted separately. (c) Geostationary satellites: All geostationary
satellites used in the literature are listed, and their temporal and spatial resolutions are annotated with points (for a single value) and dash lines (for a range). Points with only
temporal or spatial information are placed on the axes. (d) Input types: Measurements include historical irradiance data and PV output, and satellite products mean the data derived
from satellite measurements. (e) Methods: CNN, long short-term memory (LSTM), graph neural network (GNN) and their combinations are counted as DNN, whereas multilayer
perceptron (MLP) is placed under artificial neural networks (ANN).
-

In general, a positive 𝑠 indicates the model has more accurate forecasts
than the reference model, and vice versa. When compared with other
statistical metrics, 𝑠 is more independent of the forecasting objects
(irradiance or power) and climatic or meteorologic factors. Therefore,
𝑠 can be used to compare the performance of different models from
different works that are developed and validated using different data.

3. Spatial solar forecasting with deep learning techniques

A literature search was conducted on the Web of Science using the
keywords deep learning and spatial solar forecast. A total of 45 publica-
tions were found, among which only 20 considered satellite data. These
references are selected, thoroughly reviewed, and summarized in Fig. 5
and Table 3.

3.1. Overview of deep learning techniques

Deep learning methods, which inherit the structures of ANN [36],
are strong analytic tools for data-driven applications. Deep learning
methods have been widely adopted in a range of applications, as one of
the most promising state-of-the-art computer science technologies. One
of the most established and popularly employed ANNs in both research
and application is the MLP [12]. For time series analysis, RNNs are
often found advantageous. For the analysis of spatial information, CNNs
are often perceived as more suitable.

As an effective tool, RNN is capable of processing multiple in-
puts and thus can analyze temporally dynamic behaviors [78]. More
advanced variants of RNN, such as LSTM [79] or gated recurrent
unit (GRU) [80], are developed for long time series analysis. More
specifically, compared to basic RNN units, LSTM/GRU units have gates
to control information reserving and discarding, which is useful to solve
the problem of vanishing gradient when the input time sequence is
long. LSTM has hitherto been popular in the domain of solar forecast-
ing, but GRU, which has fewer parameters than LSTM, is more friendly
towards computational efficiency.
8

CNNs are effective in extracting spatial features from images. Ad-
ditionally, CNNs are able to analyze spatially correlated data, such as
multi-dimensional image/video data in computer vision tasks. Com-
bining both facts, CNNs align well with the utilization of sky-camera
and satellite images, which act as exogenous inputs facilitating spatial
solar forecasting. Since processes of solar irradiance or cloud fields
are often spatially correlated, significant enhancements in forecasting
performance of both centralized or spatially distributed systems have
been observed [12]. Commonly used CNN architectures include, but are
not limited to, AlexNet [81], ResNet [41], DenseNet [82], and Inception
net [83]. More details about CNN can be found in [41,84,85], and
other comprehensive reviews of deep learning methods can be found
in [36,86].

While deep-learning-based methods for solar forecasting have demon
strated promising results in the literature, particularly due to their
ability to bypass error-prone intermediate physical processes and di-
rectly produce the final prediction, these methods do come with limi-
tations. First, such models require large amounts of high-quality data
and robust computational resources, which can significantly increase
overall system costs. As a result, their use is often confined to locations
with ample local measurements for model development and validation.
Second, deep learning models can be prone to overfitting, leading to a
decrease in performance when addressing unseen data. For instance,
predictions pertaining to sudden weather changes that are absent from
the training dataset are likely to exhibit substantial errors. Third,
models refined for one location may not perform as well in a different
location due to variations in local conditions and system configurations.
The dynamic nature of city-scale DSGs, including new installations,
decommissioning, and maintenance events, presents a significant chal-
lenge to the adaptive capabilities of data learning models. Last, the
‘‘black box’’ nature of these models undermines their transparency
and trustworthiness, a factor that is crucial when understanding the
decision-making process is important. Consequently, grid operators
may have concerns regarding the explainability of model predictions
and the diagnosability of potential model failures.
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Table 2
Summary of deep learning frameworks.

Frameworks Initial release Platform Written language Open source Official link

Theano 2007 Cross-platform Python Yes www.deeplearning.net/software/theano

Deeplearning4j 2014 Linux, MacOS,
Windows, Android
(Cross-platform)

C++, Java Yes www.deeplearning4j.org

TensorFlow 2015 Linux, MacOS,
Windows,
Android, JavaScript, etc.

Python, C++ Yes www.tensorflow.org

Keras 2015 Linux, MacOS,
Windows,
Cross-platform.

Python Yes keras.io

MXNet 2015 Linux, MacOS,
Windows

C++, Python,
R, Java, Julia,
JavaScript, Scala, Go, Perl

Yes mxnet.apache.org

Chainer 2015 Linux, MacOS Python Yes chainer.org

PyTorch 2016 Linux, MacOS,
Windows, etc.

Python, C++ Yes pytorch.org

CNTK 2016 Linux, Windows C++ Yes www.microsoft.com/en-us/cognitive-toolkit

Caffe 2017 Linux, MacOS,
Windows

C++ Yes caffe.berkeleyvision.org

Flux 2017 Linux, MacOS,
Windows
(Cross-platform)

Julia Yes https://fluxml.ai

ONNX 2017 Windows, Linux Python, C++ Yes onnx.ai

Matlab Deep
Learning Toolbox

– Linux, MacOS,
Windows

C, C++, Java,
MATLAB

No mathworks.com/products/deeplearning
3.2. Tools to implement deep learning methods

Building a deep learning model from scratch is neither efficient
nor economical. Therefore, most researchers place their attention on
the specific applications, rather than implementation. On the contrary,
utilizing well-tested deep learning frameworks to develop the model
of interest has been found sufficient in most cases. Although other
options are available (see Table 2), the TensorFlow (Keras) and PyTorch
frameworks are the most representative and therefore recommended, in
consideration of their open-source nature, as well as rich community
and documentation support. Indeed, most of the state-of-the-art deep
learning methods and architectures are openly available in these frame-
works. Detailed mathematical theories behind several representative
deep learning algorithms are presented in Appendix B. In what follows,
a brief account of Tensorflow and PyTorch is given.

TensorFlow supports a variety of platforms, such as Linux, Win-
dows, MacOS, iOS, or Android, and it can work with a range of
programming languages, such as Python, C++, or GO. TensorFlow is
particularly popular in commercial and industrial applications due to
its computational efficiency. TensorFlow is based on a symbolic math
library with excellent documentation on its official website containing
all modules. Therefore, researchers can customize deep learning models
with TensorFlow, but its computational graph is not easy to use for
beginners. For beginners, Keras, which is used on top of TensorFlow, is
thought to be the better option. Keras is an open-source high-level deep
learning API, written in Python. Keras allows fast experimentation, so
researchers can quickly prototype and validate their ideas and concepts.
However, Keras is less configurable to build large or new deep learning
models.

PyTorch is developed based on Torch, which is mainly used for
sequence models, reinforcement learning models, computer vision mod-
els, and relational models. It is written in Python, and its API is
similar to other deep learning frameworks like TensorFlow. Similar to
TensorFlow, PyTorch is compatible with all mainstream platforms and
is strongly supported by great documentation and developer commu-
nity. Whereas both PyTorch and TensorFlow are popular in research
and development communities, the former has advantages in terms of
9

flexibility and ease of use.
3.3. Solar forecasting for multiple point locations

For spatial solar forecasting methods using deep learning, early
works were mostly interested in forecasting separately at point lo-
cations within an area. The general procedure first trains an MLP
or an extended version of that (i.e., DNN) to provide deterministic
forecasts for point locations [87,88], and then derives the spatial
forecast maps based on spatial statistics, interpolation, or other space-
filling strategies [11,88–90] (as shown in Fig. 2). Some proposed
models are optimized to provide forecasts for multiple locations si-
multaneously, which can significantly lower the efforts required for
model training and testing [87]. These works mostly employ historical
irradiance/power time series and satellite images as default model
inputs. To further enhance the model performance, some works em-
ploy NWP forecasts and meteorological data, such as temperature and
relative humidity, as additional exogenous inputs [87,90]. At present,
most methods available in the literature are developed at an hourly
resolution.

The aforementioned deep learning models are either in the form
of MLP or as hybrids with other methods that integrate conventional
machine learning and/or data analysis, such as support vector machine
(SVM) [91], principal component analysis, or wavelet transform anal-
ysis [92]. These methods are developed and validated independently
for locations in different regions with different local climates, such as
the Brazilian Northeastern region [89], Italy [90], Netherlands [87],
Greece [93], Reunion island [92], and South Korea [88,94]. Con-
sequently, the reported accuracies of these models are not directly
comparable. When validated using local data, most works suggest that
deep-learning-based forecasting methods have superior performance
over conventional methods, such as random forest (RF), support vector
regression (SVR), or unprocessed physical models [88,94].

3.4. Advanced approaches to analyze spatial–temporal information

To investigate the spatial–temporal correlations of solar irradi-
ance/power time series measured at different locations, more complex
deep learning architectures are employed for spatial solar forecasting.
In this section, RNNs for analysis of time series and CNNs for analysis

http://www.deeplearning.net/software/theano
http://www.deeplearning4j.org
http://www.tensorflow.org
https://keras.io
https://mxnet.apache.org
https://chainer.org
https://pytorch.org
http://www.microsoft.com/en-us/cognitive-toolkit
https://caffe.berkeleyvision.org
https://fluxml.ai
https://onnx.ai
https://mathworks.com/products/deeplearning
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of spatial information, particularly for satellite image feature extraction
and analysis, are to be discussed.

Since the data involved in forecasting, whether as input or output,
is often time series, it is commonplace to employ an RNN to describe
the input–output relationship. RNNs are capable of predicting the
sequences of solar irradiance or power based on input sequences of
historical solar irradiance, satellite and local-sensing images, power
measurement, or other meteorological variables. For example, Srivas-
tava and Lessmann [95] used an LSTM model to forecast day-ahead
solar irradiance using satellite data. The proposed model was applied
and validated at 21 locations (16 in Europe and 5 in the United
States). The forecasting results suggested that the LSTM model out-
performed gradient boosting regression (GBR) and feed-forward neural
networks (FFNN) in terms of day-ahead GHI forecasting. LSTM and
other RNN models can also be integrated with conventional machine
learning models to perform solar forecasting. For instance, Kim et al.
[96] applied a stacking ensemble technique to develop a hybrid sea-
sonal autoregressive integrated moving average with exogenous factors
(SARIMAX)-LSTM model that used satellite images and local PV power
data as inputs. This model analyzed and predicted spatial and temporal
characteristics for PV power in various regions of South Korea. The
SARIMAX-LSTM model had superior performance to the benchmark
DNN, LSTM, and SARIMAX models.

Unlike LSTM, CNN is usually combined with a regression (e.g., MLP)
to conduct solar forecasting [19,97]. The purpose of CNN is to analyze
the satellite images and extract features (e.g., cloud cover information)
from those. Subsequently, these extracted features are combined with
locally measured irradiance or meteorological data to form the inputs
to the regression to generate solar forecasts. The CNN-derived feature
map consists of spatial information, which could be used to estimate
a spatially continuous forecast map to cover multiple locations [97].
Most CNN+MLP structures are developed for hourly spatial irradi-
nce forecasting. The CNN integrated models have been reported to
chieve improved performance against stand-alone CNN, MLP, and
nprocessed commercial NWP solutions, such as the European Centre
or Medium-Range Weather Forecasts (ECMWF) [97–99].

The above works employ either CNNs or RNNs independently,
hereas methods were also proposed to combine both CNN and RNN

tructures, such as CNN+LSTM/GRU, to simultaneously investigate
patial and temporal information in an end-to-end fashion. Although
amed differently, the basic structure of these hybrid models resembles
hose CNN+MLP structures discussed above. The CNN parts of these
odels are used to analyze satellite images for feature extraction, while

he MLP part is replaced by the RNN unit, which is capable of analyzing
ime series and generating sequential forecasts during the inference
tage. Therefore, satellite images, PV power, irradiance, and other
eteorological data can be prepared in the form of time sequences

o estimate the model parameters in an end-to-end learning approach.
mong these hybrid models, most works employ LSTM while only a

ew works [100] employ GRU.
Hybrid models have been developed to provide spatial–temporal

orecasts for both PV power [14,100] and surface irradiance [21,101–
03] with forecast horizons ranging from one hour to one day. Some
ybrid structures can serve forecasting for up to 400 DSGs with care-
ully prepared datasets [100]. Developed and validated in different
ocations, such as the United States [14], China [100], Brazil [103] and
outh Korea [101], hybrid model architectures have shown significant
dvantages in improving the overall forecasting performance over a
et of reference models, such as stand-alone autoregressive integrated
oving average (ARIMA), MLP, RNN, GRU and LSTM [104,105].

.5. Other state-of-the-art approaches

In the realm of solar forecasting, researchers are progressively
dopting state-of-the-art deep learning methodology, such as inno-
10

ative learning strategies and application frameworks. For example,
the deep generative framework, which usually has encoder–decoder
architectures [106] where the backbones of the encoder or decoder are
usually U-net or other CNN variants. These models are able to coopera-
tively process both spatial meteorological data and satellite image data
in order to directly generate spatial solar forecasting. Compared with
other machine learning models, such as ARMA, ARIMA, GRU, LSTM-
fully connected (LSTM-FC), or CNN-bidirectional LSTM (CNN-biLSTM),
these models are reported to have better performance for various
forecast resolution and are capable of serving up to 50 real-world
PV stations [13,106]. Other innovative approaches for satellite-based
spatial forecasts include, but are not limited to graphical learning
framework [72] and extreme learning machine (ELM) [107], which
can investigate areas as large as a country (e.g. Australia). To address
the challenge that spatial distributed PV systems have different capac-
ities and configurations, a machine learning framework [108], which
integrates different data sources to construct a database for regional
models, has been proposed to capture the point-to-point relation be-
tween satellite data and in-situ measurements. This method is suggested
to be site-adaptive to any region where both satellite and ground data
are available.

In addition to statistical forecast accuracy, some works investi-
gate the enhancements of other utilization values of forecasts. For
example, most satellite-image-based works are developed for intra-day
forecasting with hourly predicting resolution. To achieve even higher
resolutions (e.g. intra-hour forecasting), Cheng et al. [72] proposed a
spatial–temporal graphical learning framework (i.e., GNN) for intra-
hour PV power prediction using historical image sequences as inputs.
This framework used bi-directional extrapolation to simulate cloud
motion and generated a directed graph to represent the shapes and
motion directions of the regions of interest. It is suggested that GNN
was more flexible for varying sizes of inputs, decreased the number of
model inputs and parameters, reduced the data storage requirements,
and was more practical for deployment of intra-hour and intra-day PV
power forecast with horizons from 30 min to 3 h. For even higher
resolution, Yao et al. [106] proposed a hybrid model that integrated
both U-net and encoder–decoder architecture to achieve intra-hour
forecasting of PV power. This model cooperatively processed both time
series of historical data and satellite image data to learn both the spatial
and temporal features. Compared with other machine learning models,
such as ARMA, ARIMA, GRU, LSTM-FC, or CNN-biLSTM, the hybrid
model is reported to have the best performance within a 1-h horizon
at 15-min resolution. On the contrary, some works develop models
for much longer time intervals. For example, Deo et al. [107] devel-
oped an ELM that was regionally adaptive to achieve monthly-scale
irradiance forecasting. Using eight Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite data variables and geo-topographical
site characteristics as inputs, this model was validated and deployed at
41 local sites distributed over Australia.

Another approach to enhance the utilization values for spatial solar
forecasting is to estimate the uncertainty associated with the prediction
map. There are always errors associated with forecasts in practice [109,
110]. Therefore, probability density function forecasts convey more
useful information for the decision-making of grid operators [111,112].
For example, Yang [113] proposed a probabilistic ensemble model
output statistics (EMOS) method to provide regional scale solar ir-
radiance forecasts for intra-hour horizons. The EMOS model allowed
variance scaling and smoothing to optimize the prediction methods.
However, to the best knowledge of the authors, very few research
has investigated probabilistic spatial solar forecasting. More discussion
about probabilistic solar forecasting for point locations can be found
in [12,50].

In general, a hybrid architecture or learning framework, such as hy-
brid CNN+RNN models or attention-mechanism-based methods, is able
to analyze time series data and generate sequential predictions. These
hybrid models have demonstrated advantages in improving spatio-
temporal forecasting performance and have been reported to outper-

form simple machine learning models, such as ARMA, ARIMA, GRU,
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LSTM-FC, or CNN. It is important to note that the performance of
these models may vary depending on the specific dataset, location, and
climate conditions. Further research and validation are necessary to
determine the best-performing model for a given circumstance.

In summary, enhanced with deep learning techniques, spatial fore-
casting has been proposed in the literature to issue forecast maps
for cloud, solar irradiance, and distributed PV power, using satellite
data with or without local measurements [93]. Related references are
summarized and compared in Fig. 5 and Table 3. However, spatial
forecasting for DSG is relatively challenging since individual DSG sites
may have different configurations, such as capacity, efficiency, or track-
ing methods. Therefore, available methods usually develop forecast
frameworks that could be quickly adapted to new DSG sites within the
investigated regions when locally measured data (e.g. power) becomes
available. Spatial forecasting of cloud and/or solar irradiance is some-
times employed as exogenous inputs to enhance the performance of
these frameworks [114].

4. Outlooks for future research

The majority of solar forecasting research focused on predicting
irradiance/power output for a single/point location. However, it is
challenging to deploy these point-location-oriented forecasting meth-
ods for a large spatial area because: (1) Most available forecasting
engines require extensive local-sensing data to develop and validate
the models, particularly for deep learning methods. However, it is very
costly to deploy a large number of distributed local-sensing systems to
collect the required data. (2) The relationship between solar irradiance
and solar power from individual PV systems is highly dependent on
system configurations such as panel orientations, local shading, lo-
cal meteorological conditions, and sun-tracking mechanism [116,117].
Therefore, for solar power forecasting, the models developed for one
site may not be suitable to be directly applied to other sites. (3) Once
a data-driven model is trained and deployed in real-time operation,
it may not adapt to unexpected noise or changes in the system or
environment, such as efficiency degeneration due to dirt or aging,
partial system malfunction, and shading from growing trees or new
buildings. Currently, most available solar forecasting methods are de-
veloped based on the assumption that the system will be operating
stably without considering the conditions of partial malfunctions or
unexpected service disruptions. Therefore, more advanced and practical
forecasting methods that are capable of addressing the above issues
should be developed. Here, a few potential approaches for spatial solar
forecasting are presented in the following with the aim of overcoming
the challenges.

One potential approach is to develop practical and economical
solutions that provide full-spectrum forecasts with minimum require-
ments of local-sensing equipment. Although local-sensing systems have
significant advantages in terms of data fidelity and temporal resolu-
tions, especially for intra-hour and intra-day forecast horizons, instal-
lation, maintenance, data synchronizing, and preprocessing costs of
local-sensing systems will scale up dramatically with the number of
sites of interest. In addition, deployment of local-sensing systems usu-
ally requires complicated procedures to obtain hardware installation
permits due to considerations including but not limited to security,
safety, and weatherproof. Therefore, with the advancement of new
generations of geostationary satellites, utilizing remote-sensing satellite
data is potentially an alternative approach to deliver intra-hour and
intra-day solar forecasts for numerous DSGs over large areas. Yagli
et al. [118] investigated the performance difference between ground-
based and satellite-based forecasting models. The results suggested that
satellite-based forecasts have comparable performance to ground-based
forecasts. Therefore, with the advancement of deep learning and spatial
interpolation techniques, forecast engines using only exogenous inputs
such as satellite data may be proposed. The advanced methods are
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expected to be quickly adapted to any location with simple system
configuration information as local inputs (e.g. panel orientations and
shading factor).

In recent years, the deep learning research community has been
rapidly evolving and innovative methods have emerged. Therefore, the
employment of more pioneering deep learning methods to analyze the
spatially distributed solar resource or power is suggested. For example,
the attention mechanism [119] based methods could address the spatial
solar forecasting problems. The deep-learning-based attention model
mimics the biological cognitive attention mechanism that focuses on
specific aspects of a complex input [120]. As a result, the attention
mechanism divides a complicated problem into smaller and simpler
tasks [121]. The attention mechanism has been successfully employed
in computer vision tasks, such as classification, object detection, se-
mantic segmentation, video understanding, image generation, and 3D
vision [122–125]. There are two major types of attention mechanisms
for computer vision tasks: soft attention and hard attention [126].
Soft attention usually employs a group of filters to create a blurring
effect that the background is faded or blurred while the ROI is in the
focus. For hard attention, it detects the ROI and discards the entire
background. More information about computer-vision-orientated atten-
tion mechanism can be found in [127]. The representative attention
methods are promising for spatial solar forecasting include but are not
limited to SENet [128], Image GPT [129], Vision Transformer [130],
and Swin Transformer [131].

Another potential approach is to employ advanced deep learning
methods that are capable of video or image sequence forecasts. Com-
pared to other meteorologic factors such as temperature, pressure,
and aerosol concentrations, volatile cloud fields are the major fac-
tors that cause intra-hour and intra-day solar ramps [65]. Therefore,
the temporal–spatial features of cloud distribution and movement are
useful exogenous inputs for intra-day solar forecasting. Satellite im-
age sequence contains essential information to extract useful cloud
properties and cloud movement features. For example, Lu et al. [132]
proposed a hybrid method that integrated both Cascade Causal LSTM
and Super-Resolution Network to predict the shape and speed of cloud
motion based on sky images. For remote-sensing-based methods, Xu
et al. [133] predicted the next few images of the satellite image
sequence based on a hybrid of generative adversarial networks (GAN)
and LSTM. This work suggested that the GAN-LSTM model is capable of
combining the generating ability of the GAN with the forecasting ability
of the LSTM. Similarly, Rüttgers et al. [134] predicted a typhoon track
using a GAN that analyzes the sequence of satellite images. However,
how to enhance the aforementioned approaches for spatial solar fore-
casts requires further investigation. Therefore, it is suggested to develop
end-to-end spatial solar forecasting approaches using the analysis of
both spatial and temporal features extracted from the sequence of
satellite images as inputs.

In addition, probability forecasting is another potential approach
to further assist solar integration [12]. Most available solar forecast-
ing methods, either for the point location or the large areas, predict
deterministic values. However, there are always inherent and irre-
ducible errors associated with deterministic predictions regardless of
the data processing, training methods, and model mechanisms [109,
110]. Therefore, the quantified solar forecast uncertainty is useful
information for grid operators to integrate solar power while mini-
mizing the adversary impacts from forecast errors. The methods to
estimate solar forecast uncertainty include but not limited to delta
techniques [135], Bayesian methods [112], bootstrap method [136],
bootstrap-ANN method [137], quantiles methods [138,139], lower up-
per bound estimation method [110], kNN ensemble model [50], naïve
Bayes classifier and Bayesian models [140,141]. More details of prob-
abilistic forecasting approaches can be found in [142–144]. Here,
employing the aforementioned methods for spatial solar forecasting and
generating spatial distributed forecast uncertainty map is suggested for

future work.



Renewable and Sustainable Energy Reviews 198 (2024) 114391Y. Chu et al.
Table 3
Summary of the publications of spatial solar irradiance or power forecasting based on remote sensing and deep learning.

Authors Year Forecast
variables and
horizons

Temporal and
spatial resolution of
satellite data

Input local-sensing data Input remote-sensing data Methods

Lima et al. [89] 2016 24-h-ahead GHI Not used Not used 2 years of hourly GHI
measurement data of 110
weather stations in
northeastern Brazil

Not used Weather Research and
Forecasting (WRF) and ANN

Pierro et al. [90] 2017 0 to 48-h-ahead
PVoutput

Not
provided

Not
provided

2 years of PV output data
from 11 sites in the south
of Italy and irradiance
data forecast by WRF-AWR

2 years of satellite-derived
irradiance data from
METEOSAT-10

ANN, referenced by smart
persistent model

Lago et al. [87] 2018 0 to 6-h-ahead
GHI

Not
provided

Not
provided

4 years of daily ECMWF
forecasts, Ineichen–Perez
clear-sky irradiance

4 years of satellite-derived
irradiance data from Royal
Netherlands Meteorological
Institute

DNN, referenced by
persistence model, linear
model, extreme gradient
boosting (XGBoost) and
ECMWF forecasts

Srivastava and
Lessmann [95]

2018 0 to 24-h-ahead
GHI

Not
provided

Not
provided

Not used 10 years of satellite-based
GHI data from 21 stations
in Europe and US

LSTM, referenced by FFNN,
GBR and persistence model

Zhang et al. [91] 2019 0 to
30-min-ahead PV
output

Not used Not used 1 year of PV output data
and 6 types of
meteorological data from
two open data portals

Not used Bayesian Network, referenced
by ARIMA, 𝑘 nearest neighbor
(kNN), LSTM, persistent model
and spatio-temporal baseline
methods

Yeom et al. [94] 2019 GHI estimation 1 h 1 to 4 km 6 years of 35 ground
pyranometers from Korea
Meteorological
Administration (KMA)

6 years of satellite images
from COMS

Physical model, ANN, RF, SVR
and DNN, RF and DNN show
better results

Nikitidou et al.
[93]

2019 0 to 6 h-ahead
cloud clearness
index (CCI)

15 min 5.5 km Not used 3 years of satellite-derived
CCI from METEOSAT
Second Generation

ANN

Jeong and Kim
[14]

2019 0 to 6-h-ahead
PV output

Not used Not used 1 year of PV output from
National Renewable Energy
Laboratory in the USA

Not used CNN, referenced by AR,
FFNN, and LSTM

Liu et al. [100] 2019 3-h-ahead GHI Not used Not used 2 years of hourly GHI and
meteorological data from
National Solar Radiation
Database (NSRDB)

Not used Variational Bayesian
convolutional GRU, referenced
by simple DNN, RNN and
LSTM

Jiang et al. [98] 2019 GHI estimation Not
provided

Not
provided

2 years of hourly GHI of
98 ground irradiance
stations from CMA

2 years of satellite images
from Himawari-6

DNN, referenced by DNN with
less inputs and ANN

Khodayar et al.
[13]

2019 0 to 2-h-ahead
GHI

Not used Not used 18 years of GHI data in 75
sites near Lake Michigan
from NSRDB

Not used Convolutional graph
autoencoder, referenced by
space–time Copula,
spatio-temporal lasso quantile
regression, Compressive
Spatio-temporal Forecasting
and spatio-temporal SVR

Doorga et al.
[115]

2019 0 to 5-day-ahead
GHI

Not
provided

3.3 km 3 years of solar irradiance
in the island of Mauritius

3 years of satellite data
from METEOSAT First
Generation

ARMA, nonlinear
autoregressive neural network
and double exponential
smoothing (DES), DES has
better results

Deo et al. [107] 2019 GHI Not
provided

Not
provided

4 year of GHI from
Scientific Information for
Land Owners in Australia

4 years of satellite-derived
data from MODIS Terra
sensor

ELM (originated from ANN),
referenced by RF, M5 Tree,
multivariate adaptive
regression spline

Yang [113] 2020 GHI estimation Not used Not used 6 satellite-derived
databases and 2global
reanalysis databases

Not used EMOS technique

Li et al. [92] 2020 GHI estimation Not used Not used 18 years of global solar
irradiance data from CM
SAF

Not used ANN

Kim et al. [88] 2020 1 to 2-h-ahead
PV output

15 min 0.5 to 2
km

1 year data of PV power
output from SK Telecom

1 year of satellite images
from Himawari-8 and
COMS

ANN, DNN and SVM, DNN
has better results

(continued on next page)
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Table 3 (continued).
Authors Year Forecast

variables and
horizons

Temporal and
spatial resolution of
satellite data

Input local-sensing data Input remote-sensing data Methods

Si et al. [19] 2020 0 to 4-h-ahead
GHI

1 h 5 km 2 years of hourly GHI data
and meteorological data in
Shandong from CMA

2 years of satellite images
from Fengyun-2G

CNN+ANN, referenced by very
deep convolutional networks,
LSTM+ANN

Pérez et al. [97] 2020 0 to 6-h-ahead
GHI

15 min 3 km 2.5 years of GHI data in
the southern part of France
from a pyranometer

2.5 years of satellite
images from METEOSAT
Second Generation

DNN, referenced by smart
persistent model

Yeom et al.
[101]

2020 GHI estimation
and 1-h-ahead
forecast

15 min to
3 h

1 to 4 km 4.75 years of GHI
measurement from 33
ground station from KMA
in Korea

4.75 years of satellite
images from COMS

ConvLSTM, referenced by RF
and ANN

Hong et al.
[102]

2020 0 to 24-h-ahead
GHI

1 h Not
provided

1 year of GHI data from
the SolarGIS database

1 year of satellite-derived
GHI data

ConvLSTM, referenced by
CNN-LSTM, ARIMA and LSTM

Kim et al. [96] 2021 0 to 1-h-ahead
PV output

15 min 2 km 4 years of PV output data
in South Korea from Open
Data Porta, meteorological
data

4 years of satellite images
from COMS

SARIMAX, SVR, LSTM, DNN,
RF and SARIMAX-LSTM,
SARIMAX-LSTM shows better
results

Narvaez et al.
[108]

2021 GHI estimation
and 24 to
168-h-ahead GHI
forecasts

30 min 111 km 10 years of 30 min GHI,
DNI, DHI and
meteorological data in
Columbia, South America

10 years of satellite data
from NSRDB

RF for estimation, LTSM+GRU
for forecast

Yao et al. [106] 2021 0 to 1-h-ahead
PV output

10 min Not
provided

9 months of PV output
data from 50 PV stations,
NWP products,
meteorological data

9 months of satellite
images from Himawari-8

CNN+LSTM+AM, referenced
by ARMA, ARIMA, GRU,
LSTM-FC, CNN-biLSTM

Cheng et al. [72] 2021 0.5 to 3-h-ahead
PV output

10 min 5 km 2 years of PV output from
DKA, clear-sky irradiance,
meteorological data

2 years of satellite images
from Himawari-8

GNN, referenced by smart
persistence, deep belief
network, ConvLSTM, 3D-CNN,
and 2D-MC CNN

Chu et al. [11] 2022 GHI, DNI and
DHI estimation

Not used Not used 2 months of images from
sky cameras in California

Not used Linear model for DHI, MLP
for GHI and DNI, and kriging
for spatial GHI

Jang et al. [99] 2022 GHI estimation 2 to
10 min

0.5 to
2 km

1 year of GHI
measurement from 81
ASOS stations

1 year of satellite images
from GK2A

CNNs

Qin et al. [21] 2022 0–6-h-ahead GHI 1 h 5 km 1 year of GHI
measurement from 10
ground stations in China

1 year of satellite images
from Himawari-6

CNN+LSTM, referenced by
CLSTM, ConvLSTM and smart
persistence

Rocha and
Santos [103]

2022 GHI and DNI
estimation

15 min 0.5 to
2 km

GHI, DNI DHI
measurement data from
SONDA station in Brazil

Satellite images from
GOES-16

XGBoost and CNN-LSTM
Since 2021, large-scale models have emerged in leading journals
or weather forecasting based on satellite imagery [145,146]. These
ioneering techniques provide promising opportunities for developing
nnovative forecasting strategies that can effectively support a wide
ange of real-world DSG operations. For instance Pangu-Weather, a
eep learning-driven weather forecasting system, utilizes reanalysis
eather data to predict future weather conditions. It employs a 3D
arth-specific transformer architecture and hierarchical temporal ag-
regation, enhancing accuracy while reducing computational time.
ested on ERA5 data, this system has demonstrated notable improve-
ents in accuracy compared to other models [147]. Similarly, the

ourCastNet model, a data-centric, high-resolution weather forecast-
ng solution, is engineered to predict variables such as surface winds
nd precipitation. It offers superior resolution compared to traditional
odels and delivers performance comparable with physics-based mod-

ls [148]. Other large models for precipitation forecasting are also
iscussed in the literature [145,149]. Despite these advancements,
here remain substantial research gaps in the application of these mod-
ls to solar forecasting, which has higher variability when compared
ith other weather variables. These issues include low data quality
nd availability, high computational resource requirements and high
patio-temporal resolution requirements of solar forecasting. As such,
he adaptability of these weather-oriented large-scale models to predict
SG generations with diverse parameters still need further research
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fforts.
In summary, there are still gaps between state-of-the-art spatial
solar forecasting methods and grid demands, particularly in the era of
massive deployment of distributed solar power techniques in different
regions. In addition to solely focus on statistical accuracy, the applica-
tion scenarios and associated grid operational policy should be carefully
analyzed to identify the optimal forecasting approach. In the future,
research of solar forecasting shall be more application orientated, cost-
effective, and practical to be deployed in order to satisfy the immediate
needs of power integration.

5. Conclusion

This review focuses on the current state-of-the-art spatial solar
forecasting methods, particularly those that employ deep learning and
remote-sensing techniques, with a special emphasis on grid-scale DSGs
over large areas. Fundamental considerations for spatial solar forecast-
ing, including data-driven forecasting procedures, satellite data sources
and processing, tools for implementing deep learning methods, and
performance assessments, are provided in a comprehensive summary
to facilitate further research. Subsequently, the available spatial solar
forecasting methods, their inputs, and associated deep learning models
are reviewed, compared, and discussed.

At present, forecasting solutions for utility-scale DSGs are still in the

early stages of research and implementation. There has been limited
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investigation into this field due to various challenges, such as high
scale-up costs, limited flexibility for adaptation to real-life operations,
and the complexity involved in considering the diverse configurations
of installed DSGs. However, advances in remote-sensing techniques and
deep learning methods have led to the identification of several promis-
ing approaches that could enhance spatial solar forecasting solutions.
There is a need for more research efforts to develop next-generation
adaptive spatial solar forecasting methodologies, which should be capa-
ble of meeting both the technological and commercial demands posed
by the substantial integration of DSG systems.
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Appendix A. Supplemental information

Commonly employed NWP models for solar forecasting include the
ECMWF [16], the global forecast system (GFS) [150], the Hirlam–
Aladin research towards mesoscale operational NWP in Euromed (HAR-
MONIE) model, the rapid refresh (RAP) model, the North American
mesoscale (NAM) model, the high resolution rapid refresh (HRRR)
model, the WRF model and its solar parameterization [151,152], and
the global and regional assimilation and prediction system - global
forecast system (GRAPES_GFS) [153]. The comparison of different NWP
models are presented in Table A.1, and the start, central and end
wavelengths (in μm) of each band of different satellite imagers are
compared in Table A.2.

The commonly used accuracy evaluation metrics are summarized
in Table A.3. The European and International Energy Agency recom-
mends the use of mean biased error (MBE), RMSE, and Kolmogorov–
Smirnov integral (KSI) to assess the solar forecast performance [154].
Industrial/utility regulations frequently require relative errors such as
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relative mean absolute error (rMAE) and relative RMSE (rRMSE) as
mandatory assessment metrics [3]. Zhang et al. [155] evaluated statis-
tical metrics based on Western Wind and Solar Integration Study Phase
2 data [156] and suggested that most of these metrics are effective in
assessing uniform forecast improvements. Therefore, the assessment of
solar forecasts is application-oriented that based on local regulations
and application/operation requirements.

Appendix B. Deep learning algorithms

Deep learning methods [36] are strong analytic tools for data-driven
learning, which have been widely applied for a range of applications as
one of the most promising state-of-the-art technologies. Here, the math-
ematical theories behind several representative deep learning methods
are presented. More comprehensive review of deep learning methods
can be found in [36,86].

B.1. Artificial neural networks (ANNs)

ANNs are inspired by the biological neural systems [159]. Compu-
tations of each ANN neuron, which is responsible for signal processing
tasks, are mathematically defined as

𝑦 = 𝜎𝐴

( 𝑁
∑

𝑖=1
𝑤𝑖𝑥𝑖 +𝑤0

)

, (B.1)

where 𝑥 is the neuron input and 𝑦 is the neuron output, 𝑤𝑖 and
𝑤0 are the weights and bias, 𝜎𝐴 is the activation function, such as
sigmoid, hyperbolic tangent, rectified linear unit (ReLU) and Leaky
ReLU functions [160,161]. The widely used activation functions and
corresponding derivatives are summarized in Table B.4, while more
detailed discussion of deep learning activation functions can be found
in [160,162]. One of the most popularly employed ANNs in both
research and application is the MLP [12]. The MLP neurons are placed
in layers, and neurons in one layer are fully forward connected with
neurons in the following layer. The outputs of neurons in one layer are
used as the inputs for neurons in the following layer.

B.2. ANN parameter estimation

The weights and bias of ANNs are mostly estimated using back prop-
agation learning [163,164], which is an supervised learning method.
The general procedure of back propagation training is:

1. Set the number of layers 𝑁𝐿 and the number of neurons 𝑁𝑁 for
each layer to define the architecture of the ANN.

2. Set the training parameters, such as tolerance parameter 𝑒𝑇 >0,
the learning rate 𝛼𝐿, and the maximum epochs of data learning.

3. Initialize the ANN weight vectors 𝑤𝑙
𝑘𝑙𝑘𝑙−1

for all layers 𝑙 =
1, 2,… , 𝑁𝐿 and all neurons 𝑘𝑙 in layer 𝑙 and 𝑘𝑙−1 in layer 𝑙 −
1. Initialization can be done randomly or by using pre-trained
weights from another dataset.

4. For each input vector 𝑥, compute the output of each neuron
𝑦𝑙𝑘𝑙 = 𝜎𝐴

(

∑

𝑛 𝑤
𝑙
𝑘𝑙𝑘𝑙−1

𝑦𝑙−1𝑘𝑙−1

)

for all layers 𝑙 and all neurons 𝑘𝑙 in
layer 𝑙.

5. Compute the loss 𝜀 of the current iterative training epoch. The
loss function could be the mean square error or cross-entropy
loss between the network outputs and the training targets.

6. Compute the derivative of the cost function with respect to the
output of each neuron in the output layer, then compute the
error 𝛿𝑁𝐿

𝑘𝑁𝐿
for each output neuron 𝑘𝑁𝐿

as: 𝛿𝑁𝐿
𝑘𝑁𝐿

= 𝜕𝜀∕𝜕𝑦𝑁𝐿
𝑘𝑁𝐿

𝜎′𝐴
(

𝑧𝑁𝐿
𝑘𝑁𝐿

)

, where 𝑧 represents the input of the specific neuron.

7. For each layer 𝑙 = 𝑁𝐿−1, 𝑁𝐿−2,… , 1, compute the error 𝛿𝑙𝑘𝑙 for

each neuron 𝑘𝑙 as: 𝛿𝑙𝑘𝑙 =
(

∑

𝑘𝑙+1
𝑤𝑙+1

𝑘𝑙𝑘𝑙−1
𝛿𝑙+1𝑘𝑙+1

)

𝜎′
(

𝑧𝑙𝑘𝑙

)

.

8. Update the neuron weights by: 𝑤𝑙 = 𝑤𝑙 − 𝛼 𝛿𝑙 𝑦𝑙−1 .
𝑘𝑙𝑘𝑙−1 𝑘𝑙𝑘𝑙−1 𝐿 𝑘𝑙 𝑘𝑙−1



Renewable and Sustainable Energy Reviews 198 (2024) 114391Y. Chu et al.

b

w

Table A.1
Comparison of different NWP models.

Name Spatial
resolution [km]

Atmo-sphere
layers

Update
frequency [h]

Forecast
horizon [h]

Forecast
resolution [h]

Covered region Main output variables

ECMWF(HRES) 9 137 6 90 1 Global GHI, DNI, extraterrestrial irradiance, surface
pressure, total column water vapor, total
column ozone, forecast albedo, cloud cover,
and air temperature

GFS 13 127 1 120/240
/384

1/3
/12

Global Air temperature, wind, precipitation, soil
moisture, and atmospheric ozone
concentration

HARMONIE 2.5 65 6 48 1 Europe GHI, DNI, air temperatures, relative
humidity, cloud cover, pressure, and
precipitable water

RAP 13 51 1 18 1 North American Wind, precipitation, air temperature and
cloud cover

NAM 12 60 1/3 84 1/3 North American GHI, DNI, DHI and air temperature

HRRR 3 51 1 18/48 0.25/1 North American Air temperature, geopotential height, dew
point temperature, graupel, cloud mixing
ratio and cloud ice

WRF-Solar 1–36 30–50 1–6 72–96 1–6 Regional GHI, DNI, and DHI

GRAPES_GFS 28 60 6 240 6 Global Double-moment cloud physics, cloud
macrophysics and prognostic cloud
Table A.2
Start, central and end wavelengths (in μm) of each spectral band of different satellite imagers. Here, VIS denotes visible, NIR demotes near infrared and IR demotes infrared.

GOES-16 ABI Meteosat-11 SEVIRI Himawari-8 AHI Fengyun-4 AGRI GK2A AMI

Start Central End Start Central End Start Central End Start Central End Start Central End

VIS

0.45 0.47 0.49 0.60 0.75 0.90 0.43 0.47 0.48 0.45 0.47 0.49 0.43 0.46 0.48
0.59 0.64 0.69 0.56 0.63 0.71 0.50 0.51 0.52 0.55 0.65 0.75 0.50 0.51 0.52

0.74 0.81 0.88 0.63 0.64 0.66 0.63 0.64 0.66
0.85 0.86 0.87

NIR

0.85 0.86 0.89 1.50 1.64 1.78 0.85 0.86 0.87 0.75 0.83 0.90 1.37 1.38 1.38
1.37 1.38 1.39 1.60 1.60 1.62 1.36 1.38 1.39 1.60 1.61 1.62
1.58 1.61 1.64 2.25 2.30 2.27 1.58 1.61 1.64
2.23 2.26 2.28 2.10 2.25 2.35

IR

3.80 3.90 4.00 3.48 3.92 4.36 3.74 3.90 3.96 3.50 3.75 4.00 3.74 3.85 3.96
5.77 6.15 6.60 5.35 6.25 7.15 6.06 6.24 6.43 3.50 3.75 4.00 6.06 6.24 6.43
6.75 7.00 7.15 6.85 7.38 7.85 6.89 6.94 7.01 5.80 6.25 6.70 6.89 6.95 7.01
7.24 7.40 7.44 8.30 8.70 9.10 7.26 7.35 7.43 6.90 7.10 7.30 7.26 7.35 7.43
8.30 8.50 8.70 9.38 9.66 9.94 8.44 8.59 8.76 8.00 8.50 9.00 8.44 8.60 8.76
9.42 9.70 9.80 9.80 10.80 11.80 9.54 9.64 9.72 10.30 10.70 11.30 9.54 9.63 9.72
10.10 10.30 10.60 11.00 12.00 13.00 10.30 10.41 10.60 11.50 12.00 12.50 10.25 10.43 10.61
10.80 11.20 11.60 12.40 13.40 14.40 11.10 11.24 11.30 13.20 13.50 13.80 11.08 11.20 11.32
11.80 12.30 12.80 12.20 12.38 12.50 12.15 12.30 12.45
13.00 13.30 13.60 13.20 13.28 13.40 13.21 13.30 13.39

a Although the visible spectrum is from 0.4 μm to 0.7 μm, and the near-infrared spectrum is from 0.7 μm to 2.5 μm, the classification for visible bands is obtained from NMSC).
The band 7 and band 8 of Fengyun-4 have the same spectral range, but the spatial resolution of band 7 is 2 km and that of band 8 is 4 km. Band 7 is for fire observation
hile band 8 is for land surface observation [56].
Table A.3
Statistical metrics for performance assessment of solar forecasts.

Definition Notes

Mean bias error (MBE) MBE = 𝑛−1
∑𝑛

𝑖=1
(

𝐼𝑖 − 𝐼𝑖
)

Mean absolute error (MAE) MAE = 𝑛−1
∑𝑛

𝑖=1 |𝐼𝑖 − 𝐼𝑖|

Root mean square error (RMSE) RMSE =
√

𝑛−1
∑𝑛

𝑖=1
(

𝐼𝑖 − 𝐼𝑖
)2

Relative mean absolute error (rMAE) rMAE = MAE∕
(

𝑛−1
∑𝑛

𝑖=1 𝐼𝑖
)

The denominator can also be averaged irradiance, peak nominal irradiance, or clear sky index

Relative root mean square error (rRMSE) rRMSE = RMSE∕
(

𝑛−1
∑𝑛

𝑖=1 𝐼𝑖
)

The denominator can also be averaged irradiance, peak nominal irradiance, or clear sky index

Coefficient of determination (𝑅2) 𝑅2 = 1 − Var
(

�̂� − 𝑰
)

∕Var (𝑰)

Correlation coefficient (𝜌) 𝜌 = Cov
(

�̂� , 𝑰
)

∕
√

Var(�̂�)Var(𝑰)

Kolmogorov–Smirnov integral (KSI) KSI = ∫ 𝐷𝐼𝑑𝐼 𝐷𝐼 is the discrepancy in cumulative distributions between the predictions and the
measurements

Error standard deviation (𝜎) 𝜎 =
√

𝑛−1
∑𝑛

𝑖=1
(

𝜀𝑖 − 𝜇
)2 Where 𝜀𝑖 = 𝐼𝑖 − 𝐼𝑖, and 𝜇 is the mean value of 𝜀𝑖

Rényi entropy (𝐻𝑎) [157] 𝐻𝑎 = (1 − 𝑎)−1log2

(

∑𝑚
𝑗=1 𝑝

𝑎
𝑗

)

𝑝𝑗 is the probability density for 𝑗th section of the error distribution, 𝑎 is the order of 𝐻𝑎, and
higher magnitude of 𝑎 puts higher weight on more probable events [158]
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Table B.4
Summary of activation functions of ANNs.

Expression Derivative

ReLU 𝜎𝐴(𝑧) =

{

𝑧, if 𝑧 ≥ 0
0, if 𝑧 < 0

𝛿(𝑧) =

{

1, if 𝑧 ≥ 0
0, if 𝑧 < 0

Leaky ReLU 𝜎𝐴(𝑧) =

{

𝑧, if 𝑧 ≥ 0
−𝜖𝑧, if 𝑧 < 0

𝛿(𝑧) =

{

1, if 𝑧 ≥ 0
𝜖, if 𝑧 < 0

Sigmoid 𝜎𝐴(𝑧) =
1

1 + 𝑒−𝑧
𝛿(𝑧) = 𝜎𝐴(𝑧)(1 − 𝜎𝐴(𝑧))

Hyperbolic tangent 𝜎𝐴(𝑧) = tanh(𝑧) 𝛿(𝑧) = (1 − |𝜎𝐴(𝑧)2|)

Gaussian radial basis 𝜎𝐴(𝑧) = exp(−||𝑧 − 𝑚||2∕𝜎2) 𝛿(𝑧) = −2(𝑧 − 𝑚)𝜎𝐴(𝑧)∕𝜎2

Unipolar step 𝜎𝐴(𝑧) = 𝐻(𝑧) =

{

1, if 𝑧 > 0
0, if 𝑧 < 0

𝛿(𝑧) =

{

0, if 𝑧 ≠ 0
∞, if 𝑧 = 0

Bipolar step 𝜎𝐴(𝑧) = sign(𝑧) = 2𝐻(𝑧) − 1 𝛿(𝑧) =

{

0, if 𝑧 ≠ 0
∞, if 𝑧 = 0

Unipolar linear 𝜎𝐴(𝑧) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑧 < −1
(𝑧 + 1)∕2, if |𝑧| < 1
1, if 𝑧 > 1

𝛿(𝑧) = [𝐻(𝑧 + 1) −𝐻(𝑧 − 1)]∕2

Bipolar linear 𝜎𝐴(𝑧) =

⎧

⎪

⎨

⎪

⎩

−1, if 𝑧 < −1
𝑧, if |𝑧| < 1
1, if 𝑧 > 1

𝛿(𝑧) = 𝐻(𝑧 + 1) −𝐻(𝑧 − 1)
9. Repeat the steps 4 to 8 until convergence is achieved, i.e. the
preset maximum epochs has been reached or 𝜀𝑗−𝜀𝑗−1 ≤ 𝑒T where
𝑗 denotes the epoch number.

10. Output the trained ANN with the final weights.

The initialization of the weights and bias can employ random
method, the Xavier method [165], or the HE method [166]. Another
commonly used parameters initialization methods is fine-tuning with
pretrained weights [167]. First, an ANN is pretrained on a large dataset
to optimize its parameters. Second, the pretrained parameters will be
used as the initialization parameters for new tasks [168,169]. Then,
the ANNs will be trained with the training data from new tasks, which
could have a relatively small learning rate.

The training or fine tuning process of ANN can be enhanced using
training optimizers. Adaptive moment estimation algorithm (ADAM)
[170] is one of the most commonly used optimizer, which is employed
as the default choice for many tasks. More details of other training
optimizers can be found in [3,159,171,172].

B.3. Spatial data analysis based on CNNs

CNN stands as one of the most effective deep learning tools for ana-
lyzing spatially correlated data, such as multi-dimensional image/video
data in computer vision tasks. As such, CNNs are commonly em-
ployed in solar forecasting methods for sky/satellite image analysis,
significantly enhancing the forecasting performance of both central-
ized and spatially distributed systems [12]. The concept of CNNs was
first proposed in the 1980s [173]. Training these networks efficiently
was a significant challenge of that era. However, this problem was
later addressed with the introduction of the gradient backpropaga-
tion algorithm proposed by Al-Saffar et al. [174]. Since then, CNNs
have demonstrated remarkable performance on datasets such as the
handwritten digit dataset MNIST [175]. Several CNN architectures are
frequently used, including but not limited to AlexNet [81], ResNet [41],
DenseNet [82], and inception net [83]. For more comprehensive in-
formation about CNNs, readers are directed to the works of [41,84,
85].

Most CNN architectures comprise convolutional, pooling, and clas-
sifier layers [36]. Convolutional layers examine input images using
receptive fields, which function as feature extractors to derive image
features or representations from different portions of an image. These
16

feature extractors, with their distinct weights, allow the extraction
of multiple features from the same location on an input image. This
process can be mathematically defined as [176]:

𝑦𝑘 = 𝜎𝐴(𝑤𝑘 ∗ 𝑥), (B.2)

where 𝑥 represents the input image, 𝑦𝑘 denotes the image features
extracted using the convolutional layer, 𝜎𝐴(⋅) is a nonlinear activation
function, 𝑤𝑘 is the trainable parameters of the 𝑘th feature extractor
of the convolutional layer, and ∗ represents the convolutional opera-
tion. Convolutional layers are proposed based on the assumption that
different parts of an image may share similar image features or rep-
resentations, allowing the same feature extractor to analyze different
positions on an image [42].

Pooling layers are often grouped with convolutional layers to form
modules [176]. These modules are typically stacked to form a deep
structure for image feature extraction [177]. A pooling layer is mathe-
matically defined as a nonlinear down-sampling method, which calcu-
lates the maximum or average of features from the same local area [81,
83]. In practice, a Max Pooling Layer, which forwards the maximum
value of the receptive field to the next layer, is more commonly
used. Pooling layers offer several benefits, including the reduction of
computational efforts, mitigation of overfitting, and enhancement of
spatial invariance [178].

The modules of convolutional and pooling layers generate a high-
dimensional matrix of image features. These image features are further
analyzed by the classifier layers to produce the final outputs. Common
classifiers include SVM, MLP, or global pooling layers [179]. MLPs,
which include fully connected layers, are commonly employed due to
their capability for arbitrary nonlinear mappings and their flexibility in
real-life application scenarios [3]. The number of neurons in the final
output layer usually equals the number of classification labels in the
training dataset. Further details on MLPs can be found in Appendix B.2.

B.4. Time series analysis with RNNs

RNNs can process multiple inputs, enabling the analysis of tempo-
rally dynamic behaviors [78]. RNNs have been effectively employed to
model and predict solar irradiance or power output time series. The
basic RNN unit is mathematically defined as:

𝑎𝑡 = 𝜎𝐴(𝑤𝑎𝑎𝑎𝑡−1 +𝑤𝑎𝑥𝑥𝑡 + 𝛽𝑎), (B.3)
𝑦𝑡 = 𝜎𝐴(𝑤𝑦𝑎𝑎𝑡 + 𝛽𝑦), (B.4)
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f

𝑚

𝑚

where 𝑥𝑡 represents the inputs, 𝑦𝑡 is the output, and 𝑎𝑡 denotes the
hidden state activation at input sequence step 𝑡. 𝜎𝐴 is the activa-
tion function. The 𝑤𝑎𝑎, 𝑤𝑎𝑥, 𝑤𝑦𝑎, 𝛽𝑎, and 𝛽𝑦 are trainable weights or
parameters.

LSTM [79] and GRU [80] are variants of RNN, developed to address
the issue of vanishing gradient when the input time sequence is long.
LSTM units, compared with basic RNN units, have an input gate (𝑖𝑡), a
orget gate (𝑓𝑡), and an output gate (𝑜𝑡). New information can be stored

in the cell state using 𝑖𝑡, existing information can be discarded from the
cell state using 𝑓𝑡, and the final output of the LSTM unit is determined
using 𝑜𝑡. The mathematical definitions of these three gates are:

𝑖𝑡 = 𝜎𝐴(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝛽𝑖), (B.5)

𝑓𝑡 = 𝜎𝐴(𝑤𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝛽𝑓 ), (B.6)

𝑜𝑡 = 𝜎𝐴(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝛽𝑜), (B.7)

where 𝑤 and 𝛽 represent the weights and biases of the three gates,
respectively, and ℎ𝑡−1 is the hidden state output from the previous time
step. For the next time step, the memory state 𝑚𝑡, candidate cell state
̃𝑡, and the output ℎ𝑡 are derived as:

̃𝑡 = tanh(𝑤𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝛽𝑐 ), (B.8)

𝑚𝑡 = 𝑓𝑡𝑚𝑡−1 + 𝑖𝑡�̃�𝑡, (B.9)

ℎ𝑡 = 𝑜𝑡tanh(𝑚𝑡), (B.10)

where tanh is the hyperbolic tangent function.
For computational efficiency, GRU has fewer parameters than LSTM.

Instead of using three gates, GRU employs an update gate 𝑧𝑡, a reset
gate 𝑟𝑡, and a memory content ℎ̃𝑡:

𝑧𝑡 = 𝜎𝐴(𝑤𝑧[ℎ𝑡−1, 𝑥𝑡]), (B.11)

𝑟𝑡 = 𝜎𝐴(𝑤𝑟[ℎ𝑡−1, 𝑥𝑡]), (B.12)

ℎ̃𝑡 = tanh(𝑤ℎ[𝑟𝑡ℎ𝑡−1, 𝑥𝑡]), (B.13)

With 𝑧𝑡, 𝑟𝑡, and ℎ̃𝑡, the final GRU output is:

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡, (B.14)
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